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In recent years, orally disintegrating films (ODFs) have been studied as alternative ways for drug administration.
They can easily be applied into the mouth and quickly disintegrate, releasing the drug with no need of water in-
gestion and enabling absorption through the oral mucosa. The ODFs matrices are typically composed of hydro-
philic polymers, in which the natural polymers are highlighted since they are polymers extracted from natural
sources, non-toxic, biocompatible, biodegradable, and have favorable properties for this application. Besides
that, natural polymers such as polysaccharides and proteins can be applied either alone or blended with other
synthetic, semi-synthetic, or natural polymers to achieve better mechanical and mucoadhesive properties and
fast disintegration. In this review, we analyzed ODFs developed using natural polymers or blends involving nat-
ural polymers, such as maltodextrin, pullulan, starch, gelatin, collagen, alginate, chitosan, pectin, and others, to
overview the recent publications and discuss how natural polymers can influence ODFs properties.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Oral dosage forms are the most common drug administration
method due to the ease of administration, high patient convenience
and compliance, minimum aseptic conditions, and flexibility in design-
ing the dosage forms. However, there are several limitations for

geriatric, pediatric, or dysphagic patients, people with difficulty in
swallowing, and even animals [1]. As an alternative method to over-
come these limitations, orally disintegrating systems were developed,
aiming for a fast release of the drug without water ingestion, also en-
abling drug absorption directly through oral mucosa to enter systemic
circulation, avoiding first-pass hepatic metabolism [2].

Orally disintegrating films (ODFs), also called orodispersible films,
are thin polymeric films with the size of a postage stamp that quickly
hydrate and adhere to the mucosa wetted by saliva, disintegrate their

International Journal of Biological Macromolecules 178 (2021) 504–513

⁎ Corresponding author.
E-mail address: mamoraes@unifesp.br (M.A. de Moraes).

https://doi.org/10.1016/j.ijbiomac.2021.02.180
0141-8130/© 2021 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

International Journal of Biological Macromolecules

j ourna l homepage: ht tp : / /www.e lsev ie r .com/ locate / i j b iomac

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijbiomac.2021.02.180&domain=pdf
https://doi.org/10.1016/j.ijbiomac.2021.02.180
mailto:mamoraes@unifesp.br
Journal logo
https://doi.org/10.1016/j.ijbiomac.2021.02.180
http://www.sciencedirect.com/science/journal/
http://www.elsevier.com/locate/ijbiomac


matrices and release active compounds for absorption [3]. Theymust be
thin,flexible, easy to handle and administrate, stable formanufacturing,
packaging, and transportation processes. They also must provide ac-
ceptable taste and mouth-feel, with a short disintegration time (up to
1min) [4]. Themost commonmethods to produceODFs include the sol-
vent casting method [1,5] and hot-melt extrusion [5–7]. Still,
electrospinning and printing technologies have also been studied as al-
ternative ways to produce personalized ODFs [5].

The typical composition of an ODF consists of a drug or active com-
pound, called active pharmaceutical ingredient (API); a film-forming
polymer; a plasticizer agent to provide flexibility and enhance mechan-
ical properties; fillers; saliva-stimulating agents to enhance salivation
and facilitate disintegration; taste-masking agents such as flavors and
sweeteners to cover the bitter and unpleasant taste of many APIs; color-
ing agents to make the film more attractive to consumers; and others,
like surfactants, enzyme inhibitors, stabilizers, and thickening agents
[4,8].

The film-forming polymer must be hydrophilic, non-toxic, non-
irritant, and present spreadability and good mechanical properties [1].
The selection of the ideal polymer is still challenging once the polymer
should be able to disintegrate as fast as possible in the oral cavity and,
at the same time, provide mechanical resistance for handling, packag-
ing, and storage [4]. Several polymers have been used in the literature,
being synthetic and semi-synthetic, such as polyvinyl pyrrolidone
(PVP), polyvinyl alcohol (PVA), polyethylene oxide (PEO), hydroxypro-
pyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC),
carboxymethyl cellulose (CMC), polyethylene glycol (PEG), and poly
(ε-caprolactone) (PCL); or natural polymers, such as pullulan, starch,
maltodextrin, pectin, gelatin, alginate, and chitosan [1,6–8].

Attention has been paid to natural polymers compared to synthetic
polymers, as they aremacromolecules obtained fromnatural renewable
sources (Fig. 1), which present favorable properties for several applica-
tions, including biomedical. Natural polymers are often naturally hydro-
philic and non-toxic, present biocompatibility, biodegradability, and
may have intrinsic mucoadhesiveness [9]. Besides, they can be com-
bined with other synthetic or natural polymers to improve some char-
acteristics, such as mechanical resistance and flexibility [10].

Therefore, in this manuscript, we reviewed the literature in which
natural polymers were used alone or in combination with other poly-
mers to develop ODFs, bringing a brief introduction to the main natural
polymers used in ODFs, their properties, and main results. Since syn-
thetic and semi-synthetic polymers have already been examined by
other reviews onODFs [2,11,12], aswell as production and characteriza-
tion methods [1–5,8], in this review, we focused on ODFs composition
prepared with natural polymers, exploring the relationship between
structure and properties.

2. Characteristics of natural polymer-based ODFs

The solvent casting method is the most used technique to produce
ODFs [1]. Musazzi et al. [5] recently published a review about the
main production methods of ODFs, including synthetic, semi-
synthetic, and natural polymers, exploring the current trends and tech-
nologies for ODFs manufacturing.

Biopolymers-based ODFs are typically produced by casting tech-
nique [10] since they cannot easily be processed by othermethods com-
monly applied to synthetic polymers, such as hot-melt extrusion.
Studies using alternative methods such as electrospinning [13],
freeze-drying [14], and heat drying methods [14] are also found in the
literature for biopolymer-based ODFs, which may influence some char-
acteristics, especially the film thickness.

Film thickness is an important parameter since ODFs should be thin
enough to adhere to the mucosa without causing discomfort. At the
same time, it should be thick enough to allow handling and manipula-
tion.Uniformity infilm thickness is also important since drugdose accu-
racy depends on film thickness. Moreover, the film thickness is taken
into account for mechanical properties calculations, such as tensile
strength. Typically, the thickness of ODFs ismeasured using a digitalmi-
crometer in at least five random positions along the film surface [8].

Besides, several properties should be investigated for the develop-
ment of biopolymer-based ODFs, such asmechanical properties (tensile
strength, elongation at break, Young's modulus, tear-resistance, and
folding endurance), surface pH, contact angle, mucoadhesiveness, disin-
tegration time (in vitro, in vivo), and dissolution of the active compound
(Fig. 2). Characterizationmethods are not always standardized for these
materials, so several methods are described in the literature with some
variations, making it challenging to directly compare the properties of
the films produced with different natural polymers [10]. For the most
interested readers on the characterization methods of ODFs, we recom-
mend reading Irfan et al. [8] and Lee et al. [1].

In general, in vitro disintegration time is evaluated by the slide frame
method: a drop of water or simulated saliva is placed upon the film. The
time until the film dissolves and forms a hole is considered the disinte-
gration time. Another method to evaluate the in vitro disintegration
time is the Petri dish method. The film is set in a Petri dish or a beaker
with some water or simulated saliva. The disintegration time is evalu-
ated as the time until the film completely dissolves. For ODFs formula-
tions, the disintegration time typically varies from 5 to 30 s,
depending on the film composition, especially the natural polymer [8].

Another essential parameter to be considered in the development of
ODFs is the surface pH, which should be closed to the pH of the oral cav-
ity, pH ≅ 6.8 [15,16]. Besides that, mechanical properties and
mucoadhesiveness are also important parameters to be analyzed.
There are no established standards for acceptable values of film me-
chanical properties and mucoadhesiveness. Still, the films must be
strong and ductile to prevent rupture during themanufacture and pack-
aging processes, flexible to provide a pleasant sensation in the oral cav-
ity, and mucoadhesive to adhere to the mucosa allowing drug
permeation. In the literature, it was found a variety of values, with ten-
sile strength ranging from 0.04 to 50 MPa, elongation at break from 2%
to more than 500%, folding endurance from 50 to more than 300 folds,
and mucoadhesiveness from 0.4 to 1.9 N, depending on the film-
forming polymer and production technique.

Film transparency is another property that is usually analyzed in
ODF development. This property is not mandatory for ODFs characteri-
zation, but it is directly related to consumer acceptability [8].

ODFs research and commercial application increased highly in the
last two decades. The first commercially available ODF was Listerine®,

Fig. 1. Schematic representation of some sources of natural polymers, processing, and production of orally disintegrating films (ODFs). Figure developed by the authors using icons
(designed by pch.vector, photoroyalty, and macro vector) obtained at Freepik.
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a mouth freshener launched by Pfizer in 2001. Since then, many com-
mercial ODFs were introduced in the market, with uses varying from
energy booster, to antiallergic and treatment of schizophrenia. The re-
views published by Borges et al. [17], Lee et al. [1], Hoffmann et al. [4],
and Dixit and Puthli [2] present a comprehensive overview of the com-
mercially available ODFs and their main uses.

Considering the application andmarket potential of ODFs, the devel-
opment of new formulations, the evaluation of the influence of various
components, and the understanding of their properties are fundamental
to the research advances in the area. To explore the use of natural poly-
mers in the development of ODFs, we discussed the structure and the
properties of main natural polymers and their influence in ODFs formu-
lations, either used alone (Table 1) or blended with other synthetic or
natural polymers (Table 2).

3. Natural polymers-based ODFs

The following sections present some natural polymers used as raw
materials for ODF development.

3.1. Pullulan

Pullulan is an exopolysaccharide produced on the surface of micro-
bial cells. It is produced mainly by yeasts such as fungus Aureobasidium
pullulans and othermicroorganisms like Cytaria darwinii, Cytaria harioti,
Teloschistes flavicans, Tremella mesenterica, Rhodotorula bacarum, and
Cryphonectria parasitic [43,44]. In pullulan production, the main re-
quirements are carbon source, nitrogen source, and other essential nu-
trients for A. pullulans' growth. Pullulan is a linear glucan with
repeating units of maltotriose. Each maltotriose unit constitutes two

α-(1 → 4) bonded glucopyranose rings interlinked by α-(1 → 6) link-
age. When partial acid hydrolysis happens, there are rare forms of
pullulan constituting panose and isopanose as repetitive units [45].

Pullulan is a non-ionic, non-hygroscopic, non-toxic, non-mutagenic,
and non-carcinogenic biopolymer. The viscosity of the solution usually
is lower compared to other biopolymers. Besides, pullulan is biodegrad-
able, edible, odorless, tasteless, and shows solubility in hot and cold
water and dilute alkali [43,45]. Due to its characteristics, pullulan has
been extensively used for food, pharmaceutical, and biomedical applica-
tions. The food industry uses it as a stabilizer, binder, intensifier, bever-
age filler, dietary fiber, thickener, texture improver, and food packaging.
Concerning the pharmaceutical and biomedical applications, it is
employed as adhesives and denture pastes, capsule coatings, drug deliv-
ery, gene delivery systems, vaccination, tissue engineering [43,45], hy-
drophilic coatings for scaffolds [46], among others.

For the production of ODFs, pullulan is used due to its good film-
forming properties; however, pullulan has a high cost, so it is usually
blended with synthetic, semi-synthetic, and natural polymers to de-
crease cost and improve other properties. Literature shows pullulan
ODFs blended with HPMC [37,47,48], pectin [47,49], maltodextrin
[50], polyvinylpyrrolidone (PVP) [51], trehalose [52] and okra biopoly-
mer [48]. Also, fillers such as cellulose nanofibers (CNF) were proposed
to improve the compatibility, and tensile strength of pullulan/HPMC
blended ODFs [37].

In addition to the blends and compatibilizers, plasticizers are added
to overcome pullulan films' brittleness [49,53]. Vuddanda et al. [53]
studied the effect of plasticizers with various physicochemical proper-
ties, such as glycerol, vitamin E TPGS, and triacetin in pullulan ODFs,
concluding that glycerol in a concentration of 20–30% (w/w) is an excel-
lent plasticizer to achieve acceptable physicochemical properties of

Fig. 2.Main characterization methods of orally disintegrating films (ODFs) made from natural polymers. Figure developed by the authors.
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pullulan films for ODF application. On the contrary, Sharma et al. [49]
compared the plasticizing effect of sorbitol, glycerol, and liquid glucose
in pullulan/tamarind pectin films, concluding that liquid glucose ex-
hibits the highest folding endurance, enhancing flexibility, and lower
disintegration time. It is impossible to compare both studies since they
evaluate different plasticizers; however, we can infer that liquid glucose
and glycerin are good plasticizer options to be investigated in pullulan-
based ODFs.

Also, flavor maskers are used, considering that most of the drugs
have a bitter taste and aim to better patients' compliance, such as aspar-
tame [21], sucralose, and monoammonium glycerinate [54]. The addi-
tion of tamarind pectin in ODFs with pullulan, besides decreasing
disintegration and wetting time and increasing folding endurance, also
masked the bitter taste of the aprepitant drug, becoming an antiemesis
option during cancer chemotherapy. Takeuchi et al. [55] aimed to de-
velop an electronic taste sensor system to evaluate the bitterness of
ODFs using a pullulan film loaded with donepezil hydrochloride as a
model. The results were satisfactory, and this system could be an excel-
lent alternative to in vivo tests with human volunteers.

Some studies on pullulan ODFs also analyzed the influence of the
drug in the film's properties, using isoniazid [47], influenza vaccine
(H5N1) [39], citalopram [48], dihydroergotamine mesylate [50],
ebastine [21], captopril [37], potassium diclofenac [54], donepezil

hydrochloride [56], tetrabenazine [57,58], levocetirizine
dihydrochloride [59], griseofulvin [60], aprepitant [49] and sodium
diclofenac [51]. Pullulan-based ODFs have also been used as class II
drug carrier, which has high permeability and low solubility. The films
were prepared using xanthan gum as a thickening agent and glycerol
as a plasticizer and exhibited excellent drug content uniformity, high
tensile strength, and low elongation at break. The results indicate that
pullulan is a good matrix for the fast release of poorly water-soluble
drugs, improving its bioavailability [60].

The solvent casting process is the most used for pullulan ODFs pro-
duction, but some attempts have been made with other manufacturing
methods. Tian et al. [52] studied air- and freeze-dryingmethods to pro-
duce pullulan/trehalose ODFs loaded with proteins. Freeze-dried ODFs
had a slightly shorter disintegration time than air-dried ODFs, probably
due to the porous structure, with values ranging from 18 to 30 s, de-
pending on the trehalose/pullulan weight ratio. On the contrary, the
tensile strength and Young's modulus of air-dried ODFs were signifi-
cantly higher than that of freeze-dried,whichwere very brittle, suggest-
ing that air-drying solvent casting method is still the most adequate.
Another exciting alternative to casting is the electrospinning method.
The electrospinning method produces amorphous fibrous films with
greater flexibility and plasticity. This method was recently used to de-
velop pullulan-basedODFs for isoniazid delivery. The spinning solutions

Table 2
Blends containing natural polymers used in the production of ODFs and the films' main properties.

Natural polymer Blend
proportion

Active compound Thickness
(mm)

TS (MPa) EB (%) Surface pH Disintegration time
(s)

Ref

Maltodextrin + HPMC 5:7 Benazepril 0.083 ± 0.006 6.93 ± 0.11 10 ± 3 [34]
Maltodextrin + HPMC 3:7 Mosapride 0.21 ± 0.06 12.2 23.3 1 [35]
HPMC + maltodextrin 8:1 Montelukast sodium 0.20 ± 0.02 0.263 ± 0.006 6.91 ± 0.021 9.7 ± 1.12 s [36]
Pullulan + HPMC 1:3 Captopril 68.0 ± 0.5 18.5 16.0 13.0 [37]
Trehalose + pullulan 4:6 Proteins 0.18 25 13 31 [38]
Trehalose + pullulan 4:1 H5N1 - influenza virus vaccine 0.119 ± 0.006 2.37 ± 1.03 6.24 ± 1.58 22.67 ± 1.24 [39]
Pre-gelatinized starch + HPMC 4:1 C. verbenacea extract 0.061–0.067 2.3–10.8 2.8–9.1 22.1–32.8 [40]
Wheat starch + HPMC + PEG 3:1:3 0.586 (HD)

0.635 (FD)
0.067 (HD)
0.044 (FD)

183.5 (HD)
165.7 (FD)

[14]

Gelatin + HC 7:3 Propolis ethanolic extract 0.067–0.070 18.5–25.9 41.1–45.9 ~360 [26,41]
Gelatin + HC (with lecithin) 8:2 0.066 ± 0.003 13.5 ± 1.9 65.5 ± 6.6 21.3 [42]
Gelatin + HPMC 1:1 Peanut skin extract 0.050 ± 0.005 20.49 ± 1.31 3.27 ± 0.26 6.36–6.88 25.94 ± 2.99 [16]

Table 1
Natural polymers used in the production of ODFs and the films' main properties.

Natural polymer Natural polymer concentration Active compound Thickness
(mm)

TS (MPa) EB (%) Surface pH Disintegration
time (s)

Ref

Maltodrextin (DE 6) 9% (w/w) Benzidamine
hydrochloride

168.4 ± 10.1 8.866 ± 0.302 8.75 ± 1.25 5.4 ± 0.1 17.6 ± 2.9 [18]

Maltodextrin 9% (w/v) Sumatriptan succinate 0.295 ± 0.01 70.25 ± 0.7 6.85 ± 0.07 32 [19]
Maltodextrin 68.4% (w/w) (related to the

total film weight)
Diclofenac sodium 119 ± 6 1.805 ± 0.060 30.57 ± 3.04 13 ± 1 [20]

Pullulan 2%–6% (w/v) Ebastine 0.07–0.12 0.0902–0.0915 75.33–90.02 6.53–6.83 17.62–19.56 [21]
Pre-gelatinized starch 2% (w/w) 0.058 ± 0.002 20.8 ± 1.4 2.5 ± 0.2 43.7 ± 2.0 [22]
Pre-gelatinized starch 2% (w/w) 0.070 ± 0.004 29.7 ± 3.1 3.6 ± 1.2 6.87 ± 0.002 10 [15]
Pre-gelatinized starch 2% (w/w) Camu-camu powder 0.069–0.072 33.7 ± 3.8 2.1 ± 0.8 4.9 ± 0.1 10.3 ± 0.8 [23]
Pre-gelatinized starch 2% (w/w) Acerola powder 0.071 ± 0.006 6.1 ± 0.2 ~9 [24]
Modified rice starch ~43.8% (w/w) (related to the

total film weight)
0.1144 ± 0.0018 0.480 ± 0.035 543.8 ± 80.9 4.54 ± 0.01 61.2–66.6 [25]

Gelatin 2% (w/w) Propolis ethanolic
extract

31.3 ± 2.9 48.2 ± 4.3 ~540 [26]

Gelatin 2% (w/w) 0.070 ± 0.003 73.0 ± 3.4 14.0 ± 5.9 6.87 ± 0.009 <35 [15]
Gelatin 2% (w/w) Camu-camu powder 0.069–0.072 11.9 ± 2.6 11.0 ± 6.8 5.7 ± 0.3 20.4 ± 0.8 [23]
Gelatin 2% (w/w) Acerola powder 0.069 ± 0.005 5.8 ± 0.4 ~20 [24]
Gelatin 2% (w/w) 51.52 ± 4.07 2.82 ± 0.22 6.21–6.73 34.43 [27]
Sodium alginate 1.25% (w/v) Piroxicam 0.104 ± 0.005 3.13 ± 0.27 3.31 ± 0.32 20.33 ± 2.66 [28]
Chitosan 0.26%–0.3% (w/v) Donepezil 0.24–0.38 48.05–69.63 6.7–7.2 20–41 [29]
Chitosan 8.33% (w/v) Piroxicam 0.36–0.46 0.045–0.056 15.75–31.33 6.64–6.88 22.36–36.66 [30]
Chitosan 1.5%–3.0% (w/w) Chitosan 0.162–0.183 ~8.0 ~2.0 5.43–14.43 [31]
Pectin 3.3%–4.3% (w/v) Ezitimibe 0.124–0.265 6.75–6.80 26–60 [32]
Pectin 3% (w/v) Coumarin 0.097–1.090 5.1–7.1 36–40 [33]
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were prepared using pullulan with HPMC, pectin, or sodium caseinate.
All formulations disintegrated in 15 s, with total drug release in 60 s,
presenting properties suitable for application as ODFs [47].

Therefore, pullulan is a promising natural polymer for application in
ODFs formulations as a film-forming agent alone or blended with other
polymers, such as maltodextrin and HPMC. It has been studied as a ve-
hicle for several active compounds, presenting good film properties for
oral administration.

3.2. Maltodextrin

Maltodextrin is a non-sweet nutritious oligosaccharide, used as a
food additive, being easily digestible and absorbed. It is produced by hy-
drolysis from starch and is found commercially as a white hygroscopic
powder. Three to nineteen units of D-glucose constitute maltodextrin.
The bonds between the glucose units aremainly linked to the glycosidic
bond α-(1 → 4). Maltodextrin is classified according to the dextrose
equivalent (DE), ranging from 3 to 20. The smaller the glucose chain,
the higher the DE and, consequently, more soluble . Maltodextrin has
the following properties: good film former, odorless, good solubility,
low hygroscopicity, excellent carrier, non-toxic, edible, soluble in
water, and poorly soluble or even insoluble in anhydrous alcohol
[11,61].

Maltodextrins can be produced with different rawmaterials, hydro-
lysis methods, and process conditions, resulting in various
maltodextrins with unique physical and chemical properties for several
applications [11,61]. Although maltodextrin is widely used in the food
industry, it has also been studied in biomedical and pharmaceutical ap-
plications as a film-forming agent for ODFs, showing good mechanical
properties and fast disintegration.

The dextrose equivalent (DE) seems to play an essential role in de-
fining the properties of maltodextrin ODFs. Lower DE resulted in ODFs
with higher tensile strength and lower elongation, lower moisture con-
tent, and shorter disintegration time (in the range of 15–30 s) [18]. The
same trend of the stiffer and less ductile film in lowDEwas observed by
Cilurzo et al. [62]. However, all the formulations exhibit the same disin-
tegration time (approximately 10 s), regardless of the maltodextrin DE.
Thus, special attention should be paid to the DE in the development of
maltodextrin ODFs.

Maltodextrin has been explored in ODFs due to its good film-
forming properties. It can be used alone or blended with HPMC
[34–36,63,64], the most used semi-synthetic polymer to develop
ODFs. Some studies also report blending of maltodextrin with pullulan
[50], dextran [65], karaya gum, and xanthan gum [66].

Another interesting approach is to load ODFs with fillers.
Franceschini et al. [67] increased the tensile strength in 1.5 times and
the elastic modulus in four times by adding polyvinyl acetate (PVAc)
nanofiller at maltodextrin-based ODFs at concentrations of 3 and 5%
w/w of PVAc. Musazzi et al. [68] developedmaltodextrin ODFs contain-
ingmelatonin-loaded solid lipid microparticles without significantly al-
tering the microparticles and the films' mechanical properties. Besides,
the films containing more maltodextrin presented the highest tensile
strength and faster release profile of themelatonin in the simulated sal-
ivary fluid. Maltodextrin was also used as a film-forming agent of ODFs
for quercetin nanocrystals delivery. When quercetin was added, the
films showed higher elongation at break, probably related to the low in-
terfacial interaction between quercetin nanocrystals and maltodextrin
matrix and fast dissolution profile [69].

Also, plasticizers are added to improve the mechanical properties of
maltodextrin-based ODFs. The following plasticizers are normally used
to enhance the ductility of maltodextrin ODFs: glycerin [65,69,70], sor-
bitol [18,63,65], xylitol [18] and propylene glycol [63,70]. Besides,
non-traditional plasticizers such as amino acids glycine and proline
were evaluated to maltodextrin ODFs, showing good potential to im-
prove the film's ductility [71]. Plasticizers such as PEG 400 and esters
of citric acid are not recommended since they have low miscibility

with maltodextrin [70]. Maltodextrin ODFs plasticized with propylene
glycol exhibit higher elongation at break and lower tensile strength
than the same films plasticized with glycerin [70]. However, although
both films presented quick disintegration time, films with propylene
glycol were discarded due to volunteers' unpleasant taste during
in vivo tests, compromising patients' compliance.

The most used method to produce maltodextrin-based ODFs is sol-
vent casting; however, other manufacturing techniques have also
been explored. Cilurzo et al. [70] compared the casting method with
hot-melt extrusion to develop maltodextrin ODFs loaded with
piroxicam. They concluded that the casting method is more indicated,
exhibiting the highest patients' compliance, better in vitro and in vivo
disintegration time, improving the dissolution of poorly soluble drugs
as piroxicam. In an attempt to produce personalized ODFs, in which di-
mensions and drug dose would be adjusted to each patient, 3D printing
was proposed by Elbl et al. [72] andMusazzi et al. [73], resulting in films
with high flexibility and low disintegration time. These results indicate
the potential use of printing technologies to develop on-demand and
personalized ODFs.

Therefore, maltodextrin films generally exhibit high flexibility and
rapid disintegration due to their hydrophilic nature, making maltodex-
trin a promising natural polymer for application in ODF formulations as
a film-forming agent alone or blended with other polymers such
as HPMC.

3.3. Starch

Starch, an abundant polysaccharide, presents two macromolecules:
amylose and amylopectin. Amylose is a linear polymer of α-1,4
anhydroglucose units that forms a colloidal dispersion in hot water
and has excellentfilm-forming ability. Amylopectin is a highly branched
polymer of α-1,4 anhydroglucose chains linked by α-1,6 glucosidic
branching points, being completely insoluble [10,74]. Starch can be ob-
tained from various sources such as botanical species like corn, wheat,
potato, cassava, and rice, and the starch of each origin has specific com-
positions and different properties [10]. The semi-crystalline nature of
native starch can present undesirable characteristics, such as low solu-
bility or poor mechanical properties. It may be chemically, enzymati-
cally, or physically modified to enhance its properties and
functionality [75,76].

Starch and modified starches are extensively applied in the food in-
dustry [74]. They have been studied for pharmaceutical and biomedical
applications, such as excipients, substrates for cell seeding, scaffolds for
tissue engineering, drug delivery systems, and bone replacement im-
plants [76]. Besides, starch materials present the ability to form trans-
parent, odorless, tasteless, and biodegradable films [23], which are
favorable properties for ODF applications. Several authors have applied
starch in ODF formulations as components of the matrix. They are in-
volved as leading film-forming agents [15,23–25,77], blended with
other biopolymers [15,23,24,78,79], or blended with synthetic or
semi-synthetic polymers [14,22,78,79].

The properties of ODFs made from starch may depend on the starch
source andmainly on the starchmodification before use. The use of pre-
gelatinized cassava starch seems to be a good option in the develop-
ment of ODFs, with low disintegration time (in the order of 10 s) and
high tensile strength (in the order of 30 MPa) [15,23,24]. Changing the
starch source from cassava to corn increased the disintegration time to
40 s, as observed by Guerra et al. [77] in the development of ODFs
from pre-gelatinized corn starch. The use of ball-milling as a physical
modification of rice starchwas also proposed as an alternative, resulting
in a disintegration time of 1.11 min and tensile strength in the order of
0.5 MPa [25].

Blending starch with other polymers is also an attractive approach
for the development of ODFs with suitable properties. When combined
with gelatin, the increase in the starch content resulted in an increase in
hydrophilicity [15], tensile strength, and a decrease in the disintegration
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time [15,23], while mucoadhesiveness was kept constant [24]. On the
other hand, when blended with HPMC, the starch content increase led
to increased disintegration time and mucoadhesiveness [22].

Various methods to produce starch-based ODFs may also be used as
alternatives to the traditional casting method. Liew et al. [14] investi-
gated the use of wheat starch blended with HPMC and PEG for the de-
velopment of ODFs by freeze-drying (FD) and heat drying (HD)
methods. The increase in HPMC and starch concentrations increased
tensile strength and disintegration time, being the Starch:HPMC:PEG
(3:1:3) blend the optimized proportion of the components. Besides
that, freeze-dried films showed lower tensile strength but better folding
endurance and disintegration time than heat-dried films, indicating the
influence of the production method on the film properties.

Starches are usually promising biopolymers for ODFs as film-
forming agents; however, modified or pre-gelatinized starches are
even more suitable for this application. They can form homogeneous
and hydrophilic films, besides presenting good mechanical properties,
fast disintegration, and high mucoadhesiveness.

3.4. Hydrolyzed collagen and gelatin

Collagen is an animal protein from the extracellular matrix of mam-
malian connective tissues. Collagen maintains the extracellular matrix's
biological and structural integrity, providingmechanical strength, stim-
ulating cell adhesion and proliferation, and being a dynamic and flexible
material to refine cellular behavior and tissue function [10,80]. There are
several types of collagen, but type I is the most commonly used. Colla-
gen molecules comprise three polypeptide chains that form a triple-
helical structure stabilized by hydrogen bonds with ~300 kDa molar
mass, mainly formed by the amino acids glycine, proline, and hydroxy-
proline [80,81].

Denaturation of native collagen followed by hydrolysis by proteo-
lytic enzymes results in hydrolyzed collagen (HC), composed of small
peptides with lowmolar mass. HC presents low viscosity solution, anti-
oxidant capacity, antimicrobial activity, bioavailability, and high solubil-
ity. It is employed in the cosmetic, pharmaceutical, biomaterials, food,
and nutraceutical industries. However, due to its low molar mass, HC
is not suitable for filmproduction or scaffolds by itself, so it is usually ap-
plied combined with other biopolymers [81].

Gelatin is a protein derived from the thermal denaturation and acid
or alkaline partial hydrolysis of collagen. Its structure consists of a poly-
peptide mixture of α-, β-, and γ-chains, with a typical amino acid com-
position of Ala-Gly-Pro-Arg-Gy-Glu-4Hyp-Gly-Pro-. When gelatin is
obtained by acid treatment of collagen, it is classified as type A, while
when obtained by alkali treatment of collagen, it is classified as type B.
The most used sources of extraction are bovine, pigskin, bones, and
fish skin. Gelatin is water-soluble, and its properties depend on the
characteristics of the initial collagen and the extraction process. It pre-
sents film-forming capacity, gel formation, adhesion, cohesion, trans-
parency, thickening, and water-binding capacity. It is widely used in
the food industry as a gelifier, stabilizer, emulsifier, and texture agent
for several products [82]. In health applications, gelatin is employed in
wound dressings, drug delivery, and oral films, exhibiting properties
like biodegradability, biocompatibility, non-immunogenicity,
mucoadhesiveness, and film-forming ability [10,23].

The addition of HC to gelatin-basedODFs increases thefilms'flexibil-
ity and makes the films more hydrophilic, with low values of contact
angle and fast disintegration. This behavior may be related to the low
molecular weight of HC molecules compared to gelatin [26,41,42].

Gelatin-based ODFs presented high tensile strength and
mucoadhesiveness compared to other natural polymers
[15,23,24,26,41,42,79]. However, thefilms seem to have poor hydrophi-
licity when gelatin was used alone. It was blended with HC [26,41,42],
starch [15,23,24,79], CMC [79], and HPMC [27], in which the increase
in the proportion of the other blend components increased hydrophilic-
ity and reduced disintegration time of the ODFs. When blended with

starch [24] orHC [26], thefilms kept themucoadhesiveness constant re-
gardless of the blends' proportion, but with HPMC [27], the increase of
gelatin proportion increased the blends' mucoadhesiveness.

The method used to evaluate the disintegration time also affect
gelatin-based ODFs. Several studies used the slide frame method, in
which the disintegration time is the time needed for a drop of solution
placed on the top of the film to dissolve the film, forming a hole.
These studies presented suitable disintegration times, in the order of
30 s [15,23,24,27,42]. On the other hand, when the Petri dish method
was used, the sample is immersed in a solution and considered the
time needed to disintegrate the film completely. The studies presented
disintegration results over 5 min [26,79]. However, when Kwak et al.
[83] used fish gelatin compared to the pigskin type A gelatin commonly
used in other studies to produceODFswith caffeine, they obtained a dis-
integration time of 40 s by the Petri dishmethod. This indicates that the
gelatin source could also play an important role in the ODF final
properties.

In general, there are few studies using collagen in the development
of ODFs, but it seems that HC enhances hydrophilicity and disintegra-
tion propertieswhen blendedwith other biopolymers. Besides that, gel-
atin shows good potential for application as ODF, primarily when used
in combination with other polymers, in which gelatin acts as an en-
hancer of mechanical strength and mucoadhesive properties.

3.5. Alginate

Alginates are salts of alginic acid, a natural anionic polysaccharide
found mostly in brown algae species, such as Macrocystis pyrifera and
Laminaria hyperborea [84]. Alginates are copolymers which structure
consists of (1→ 4) glycosidically linked β-D-mannuronic acid (M) and
α-L-glucuronic acid (G)monomers in either similar or alternating cova-
lent sequences or blocks (MMMM, GGGG, or GMGM). The proportion
and distribution of these blocks depend on the alginate source and de-
termine the biopolymer's properties. According to its properties, they
can be used as films [85], membranes [86,87], hydrogels [88], micropar-
ticles [89], capsules for cells in the treatment of diabetes, among others
[90–93].

Alginate in solution is an anionic polyelectrolyte; moreover, it pre-
sents biocompatibility, low toxicity, immunogenicity, stability in physi-
ological conditions, and ability to form gels in the presence of divalent
cations, e.g., Ca2+ and Mg2+. Films of sodium alginate present high hy-
drophilic characteristics, with low mechanical properties and water re-
sistance, usually crosslinked with Ca2+ to enhance mechanical and
water resistances. Alginate has been extensively studied and used for
food, biomedical, and pharmaceutical applications due to its swelling
and gelation abilities, creating a moist environment favorable for use
in wound dressings formulations [90,91]. It has also been applied in
ODFs formulations as a film-forming agent or combined with other
polymers [10].

Alginate-based ODFs presented high tensile strength and high hy-
drophilicity with disintegration time within 60 s [28,63,94]. Murthy
et al. [94] tested three different alginate concentrations, and the highest
one resulted in the film with the fastest disintegration (22 s). However,
El-Bary et al. [28] compared HPMC-based films and concluded that
HPMC-based ODFs presented similar disintegration times with higher
mechanical strength.

When blended with HPMC, tensile strength and disintegration time
varied according to the blend proportion. The proportion of 4:1 (Algi-
nate:HPMC) resulted in ODFs with reduced tensile strength and slower
disintegration than the alginate film in the same study [63]. On the
other hand, the proportion of 1:2 (Alginate:HPMC) resulted in ODFs
with higher tensile strength and faster disintegration than alginate
alone in the same study [95]. Alginate was also blended with xanthan
gum, with HPMC and maltodextrin [63], and with PVA and PEG400, in
which the ODFs presented high flexibility and a fast disintegration
within 20 s [96].
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Thus, alginate films represent good systems to ODFs formulations,
promoting hydrophilic characteristics and suitable disintegration time.
It has also been studied in blends with other polymers to improve its
mechanical properties. However, few studies have explored alginate
as a film-forming agent in ODFs, indicating that there is still much to
be explored, such as blends with other natural polymers, as well as its
mucoadhesive potential.

3.6. Chitosan

Chitosan is produced by partial deacetylation of chitin, a natural
polysaccharide found in exoskeletons of arthropods such as insects
and crustaceans, and fungi cell walls. Chitin is made up of N-
acetylglucosamine units, while chitosan is a cationic polymer consisting
of a linear sequence of monomeric units of 2-acetamido-2-deoxy-D-
glucopyranose 2-amino-2-deoxy-D-glucopyranose linked by β(1 → 4)
glycosidic bonds. Chitin is insoluble in common solvents due to its
highly crystalline structure. On the contrary, chitosan can be easily dis-
solved in aqueous acidic solutions, making it suitable for various appli-
cations [97,98].

Chitosan can be molded in different forms like gels [99], beads [100],
membranes [86,101], sponges [102], films [103], tubes [104], and fibers
[105]. Chitosan devices present biodegradability, biocompatibility, low
toxicity, and antimicrobial activity. Several applications have been re-
ported with chitosan like food packaging, biomaterials for tissue engi-
neering, drug delivery systems, edible films, and coatings, among others
[106,107]. Besides, chitosan presents mucoadhesiveness, which is an es-
sential property for oral film formulations [9,13,108]. However, few stud-
ies applying chitosan into ODF formulations were found in the literature.

Chitosan molar mass, particle size, and concentration in solution
seem essential in developing suitable ODFs. The films produced using
low molecular weight chitosan presented better physical-chemical
properties and better sensorial analysis results than mediummolecular
weight chitosan. All films presented fast disintegration, butwhen chito-
san concentration increased, disintegration time alsoincreased [31].
Also, nano-sized chitosan-based films showed faster disintegration
compared to micro-sized ones [29]. When sodium starch glycolate and
crospovidone were used as super disintegrating agents, chitosan-
based ODFs also had a fast disintegration, below 36 s [30].

Several plasticizers were used in the development of chitosan-based
ODFs, such as glycerol [29,31], sorbitol [31], PEG400 [30], and PEG600
[29]. In general, the chitosan films presented high tensile strength and
flexibility.When super disintegrating agentswere used, thefilms exhib-
ited lower tensile strength. In addition, the films' properties were simi-
lar to CMC-based films developed in the same study [30]. Besides that,
chitosan was also used as a mucoadhesive agent to HPMC-based films
to enhance drug permeability [109].

The use of chitosan in ODFs formulations is still little explored, being
more used due to its mucoadhesive property. Also, the concentration of
chitosan solution used to prepare the films and themolarmass, particle
size, and the addition of super disintegrating agents and other excipi-
ents play a significant role in developing suitable ODFs,with short disin-
tegration time and good mechanical properties.

3.7. Pectin

Pectin is a complex mixture of polysaccharides found in cell walls,
where its function consists of contributing to tissue integrity, rigidity,
and hydration [10,110]. Poly α1–4-galacturonic acids compose pectin
with varying degrees of methylation of carboxylic acid and amidated
polygalacturonic acids. According to the ratio of esterified galacturonic
acid groups, it can be classified as high methoxyl pectin (HMP) and
low methoxyl pectin (LMP). HMP can form a gel in acidic media in the
presence of sugars like sucrose or glucose, while LMP forms a gel in
the presence of multivalent ions that binds pairs of carboxyl groups of
different pectin chains [110].

Pectin is awater-soluble biopolymer extensively used in the food in-
dustry as a gelling, stabilizing, and thickening agent in jams, yogurts,
fruity milk drinks, and ice creams, and it has been studied for applica-
tions as packaging and edible films [110]. Pectin has also been applied
in the research and development of natural medicines and health prod-
ucts due to its wide availability. It can be used for drug delivery systems
as gel beads, films, and matrix tablets [111].

Just a few papers used pectin in ODF formulations as a film-forming
agent, making it difficult to compare studies and understand the real in-
fluence on films' properties. Reddy and Murthy [32] used several con-
centrations of commercial pectin as the film-forming agent to develop
ODFs. The increase in the pectin concentration increased the films'
thickness and flexibility, increasing the disintegration time, indicating
that the use of a lower concentration is more suitable for developing a
pectin-based ODF. When blended with pullulan, pectin extracted from
tamarind enhanced the properties of the ODFs produced. It was used a
low concentration of tamarind pectin, in which the increase in the pro-
portion of the pectin in the blenddecreased the disintegration time [49].

Thus, pectin is a promising film forming agent for ODF formulations.
It is hydrophilic and provides flexibility and fast disintegration. How-
ever, the films' final properties may depend on the pectin's source and
the concentration of the filmogenic solution. Therefore, pectin from var-
ious sources either alone or blended with other polymers can still be
more explored for the application as ODFs.

3.8. Other biopolymers

Other biopolymers have also been explored for application into
ODFs formulations, such as xanthan gum, karaya gum, moringa gum,
okra, and hyaluronic acid.

Xanthan gum is a natural polysaccharide produced by bacteria of the
genus Xanthomonas, composed of D-glucosyl, D-mannosyl and D-
glucuronyl acid residues with varying proportions of O-acetyl and pyruvil
residues [112,113]. Xanthan gum has been used in biomedical applica-
tions such as wound dressings due to its excellent biocompatibility and
gelling property [10,112]. Sheikh et al. [114] used xanthan gum as a
film-forming agent in ODFs and obtained filmswith better physicochem-
ical andmechanical properties than HPMC, HEC, and PVA films. The films
disintegrated between17 and 27 s and released the drug faster than other
formulations, indicating the potential use of xanthan gum for ODFs appli-
cation. On the other hand, Sayed et al. [115] obtained xanthan gum films
with longer disintegration time and lower tensile strength thanHPMC, al-
ginate, and maltodextrin films. When maltodextrin was blended with
xanthan gum to deliver rizatriptan benzoate, the films presented good
folding endurance and better drug release than maltodextrin-based
films [66]. Xanthan gum was also added to HPMC ODFs as a film-
modifier and resulted in filmswith improved physicochemical properties
[116]. Other studies used xanthan gum and other gums, such as Arabic
gum, as thickening agents to develop ODFs formulations [60,117].

Vidyadhara et al. [66] used karaya gum, an exudate gum polysaccha-
ride extracted from Sterculia urens trees [118], in combination with
maltodextrin to develop ODFs. The formulations with karaya gum pre-
sented lower folding endurance values but showed an average drug re-
lease of 79–90% within 15 min, which was enhanced compared to
maltodextrin alone.

Shahzad et al. [48] developed ODFs based on HPMC with okra bio-
polymer, a natural polysaccharide extracted from the okra plant
(Abelmoschus esculentus L.), and moringa gum, a natural gum obtained
from theMoringa oleifera plant. All formulations showed neutral surface
pH and disintegration time in a range of 11–25 s. Based on mechanical
properties such as tensile strength and elongation, the authors con-
cluded that the films containing okra biopolymers were more adequate
for application as ODFs.

Recently, Kim et al. [119] showed the potential of applying
hyaluronic acid (HA) as ODF. The films' physical properties depend on
the molecular weight of HA: low molecular weight HA seems to be
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more suitable for application as ODFs with fast disintegration and good
mechanical properties. Other studies also applied modified HA as a
mucoadhesive excipient for drug delivery systems [120,121].

Thus, several biopolymers as gums have been used as film-forming
agents, thickening, or film-modifiers in ODF formulations to improve
film properties, providing good hydrophilicity, viscosity, flexibility,
and swelling capacity.

4. Future trends

Orally disintegrating films represent advantageous drug administra-
tion methods to the elderly, pediatric, and dysphagic patients and may
even be a new method of vaccine dosage forms. Several natural poly-
mers present suitable properties for application into ODFs formulations.
However, the natural polymer selection still represents a challenge
since it plays a significant role in the films' final properties. Besides, it
is difficult to simultaneously achieve adequate mechanical resistance,
flexibility, mucoadhesiveness and disintegration time. That is why
ODFs are generally developed by blending natural polymers with
other synthetic or natural polymers to combine their properties and
achieve better results.

Despite the advances in the area in recent years, there is still a lot to be
explored in the development of ODFs. Some natural polymers commonly
studied for biomedical and pharmaceutical applications as drug delivery
systems could also be explored for application as ODFs, such as guar
gum, gellan gum, carrageenan, andother exudate gums, amongother nat-
ural polymers. Many of them present desirable properties such as hydro-
philicity, film-forming capacity, and mucoadhesiveness. Recently,
attention has beenpaid to the use of lignin as an excipient for pharmaceu-
tical products, like tablets and drug-controlled release devices [122–124].
Pishnamazi et al. [123,124] showed that lignin-based tablets have faster
disintegration than non-lignin tablets, indicating its potential to be ex-
plored into ODFs formulations. Silk fibroin, a protein present in silk pro-
duced by silkworms, has also been widely studied for pharmaceutical
applications and in drug delivery systems formulations [10], but still little
explored in ODFs. However, silk fibroin has good mucoadhesive proper-
ties [9,125]. Besides, blending different natural polymers may enhance
several properties and promote adequate characteristics to develop new
ODF matrices.

Many techniques have been applied for ODFs development. Al-
though solvent casting is the most used, new technologies such as
inkjet, flexographic, and 3D printing seem to be promising [72,73].
Printing techniques open new possibilities to customize dosage forms
according to the individual's need for different patients, developing
on-demand production methods, and incorporating multiple compo-
nents into the same printing solution or multiple layers [10]. Also,
there is an increase in the search for natural compounds as active ingre-
dients, replacing the everyday use of synthetic drugs and encouraging
ODFs of entirely natural composition.

Thus, we conclude that ODFs are a promising drug administration
form,with increasing visibility in themarket due to their excellent patient
compliance and possibility of individual drug dosage. Nonetheless, the
use of natural polymers opens excellent possibilities in developing
ODFs, since they exhibit good film-forming properties, hydrophilicity,
mucoadhesiveness, and, generally, good mechanical properties. Despite
that, there is still place to investigate other natural polymers not explored
yet, as well as alternative techniques to casting, such as printing
technologies.
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