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the formation of the highly specialized luminal fluid milieu. Nowadays 
one of the more interesting scenarios in this tissue is the high number 
of epididymal genes encoding a variety of innate immunity secretory 
proteins.6 Among these genes, several encode β‑defensins, which are 
members of a large family of cationic cysteine‑rich proteins exhibiting 
a broad‑spectrum antimicrobial activity.7–10 β‑defensins are normally 
made up of fewer than 80 amino acid residues with 5–12 positively 
charged residues, usually with a very stable structure composed of one 
alpha‑helix and three beta‑sheets, and generally encoded by a gene 
with two exons. These characteristics are found in β‑defensins such 
as β‑defensin 1 (DEFB1) and DEFB2, among others. Some protein 
isoforms encoded by the SPAG11B (sperm‑associated antigen 11B; 
variants SPAG11C, SPAG11D and SPAG11E, also known as BIN1B) 
and human DEFB126 (the orthologue of the rat and mouse Defb22) 
genes are exceptions, being longer owing to a more complex gene 
structure, with more than two exons that encode additional amino 
acids after the N‑terminal secretion signal leader sequence or at the 
C‑terminus adjacent to the C5 and C6 residues.7,11,12 Herein, we review 
the current understanding on the contributions of β‑defensins to the 
epididymis, with a special focus on the recent discoveries indicating 
that these proteins may play different roles in the epididymis during 
prenatal and postnatal life. We shed light on evidence and perspectives 

INTRODUCTION
The mammalian epididymis, a highly convoluted duct that links 
the efferent ductules to the vas deferens, plays a critical role in 
sperm maturation, transportation, concentration, protection against 
pathogenic and metabolic injuries, and storage before ejaculation. It can 
be subdivided into the initial segment, caput, corpus, and cauda regions 
on the basis of the histological and functional differences. Further 
subdivisions of these regions into intra‑regional segments, limited by 
connective tissue septa, have been identified in rodents.1,2 These discrete 
segments present specific patterns of gene expression and protein 
localization, representing distinct regulatory subunits of the epididymis 
that tightly regulate the composition of the epididymal luminal fluid, 
which dynamically interacts with the spermatozoa during their journey 
along the epididymis.1,2 Androgens and other steroid hormones, 
paracrine and lumicrine factors and, more recently, microRNAs are 
among important factors that regulate the segment‑dependent gene 
expression in the epididymis.3,4 The maintenance of the regional 
normal fluid microenvironment along the epididymal duct is essential 
for sperm maturation and, therefore, contributes to male fertility.3–5

The advances in the last 15 years in genome and gene and protein 
expression profiling have greatly expanded our view of the complexity 
of the function of the epididymal epithelium and its contribution to 
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regarding new potential roles for β‑defensins in the developing 
epididymis.

β‑DEFENSINS IN THE ADULT EPIDIDYMIS – ROLE IN 
SPERM PROTECTION AND FUNCTION
Since their first identification as antimicrobials in cattle airway 
epithelial cells, more than 30 β‑defensins genes have been described 
in human and other species.10,13,14 Several are constitutively expressed 
in adult tissues from the male reproductive tract and are found to 
be particularly abundant in the testis and epididymis.11,13,15 In some 
cases, their expression is almost restricted to or very abundant in 
the adult epididymal epithelium, where most of them display unique 
region‑  and cell‑specific expression patterns depending on the 
β‑defensin evaluated.15–19

One question in this scenario is why so many β‑defensins 
are expressed in the epididymal epithelia and secreted into the 
epididymal lumen, where they are usually found on the surface of 
maturing spermatozoa15,17,20 Would they all be required for sperm 
protection and maturation while the spermatozoon travels through 
the epididymis? Since the β‑defensin genes are found in clusters that 
have arisen from gene duplication,13,21,22 many family members are 
believed to be functionally redundant. Thus, one point of view is that 
redundancy of their functions would allow them to back each other 
up, perhaps explaining why β‑defensin knockout mice have not been 
reported as being developmentally lethal or with a severely impaired 
phenotype.23–26 On the basis of the region‑ and epithelial cell‑specific 
β‑defensin expression pattern in the adult epididymis, Zhang et al.18 
have speculated that multiple β‑defensins act in a synergistic and 
sequential manner in the epididymal luminal fluid, contributing 
collaboratively in this way to the achievement of sperm protection, 
maturation and fertilization ability along the epididymal duct.

In fact, there is increasing evidence that β‑defensins display 
multifunctional roles in host defense, both as effectors and regulators, as 
well as in the modulation of the immune system during an infection or 
inflammatory response.14,15,17,27 On one hand, they are effectors of host 
defense by presenting in vitro and in vivo antimicrobial activities against 
bacteria and fungi.7,15 In addition, several recombinant β‑defensins 
have been shown to regulate host defense by their ability to bind to 
or neutralize the activity of the lipopolysaccharide (LPS) endotoxin 
of Gram‑negative bacteria,27,28 suggesting ways by which β‑defensins 
can protect epididymal spermatozoa against the inflammatory effects 
of LPS or infection by Gram‑negative bacteria.

On the other hand, β‑defensins can inhibit in vitro and in vivo 
LPS‑mediated inflammatory responses,28 which are events not necessarily 
correlated with their capacity to bind LPS, and that may involve their 
interference with signaling cascades triggered by the activation of Toll‑like 
receptor 4  (TLR4) by LPS and other inflammatory factors.28,29 In this 
context, there are data supporting both anti‑ and pro‑inflammatory roles 
for β‑defensins,10,28 indicating the need for further studies to uncover their 
specific roles in the epididymis as modulators of the immune system. 
How β‑defensins communicate and participate with other key innate 
immunity effectors such as TLR4, humoral mediators (e.g., cytokines, 
chemokines) and immune cells (e.g., phagocytes and dendritic cells)30–32 
in the maintenance of the epididymal function and in the ability of 
this organ to nurture the spermatozoa in normal and in infectious and 
inflammatory conditions, are still poorly understood.

Aside from antimicrobial and immune system modulation 
properties, different epididymal β‑defensins have been implicated 
in performing reproduction‑specific tasks, such as modulation of 
sperm function in their physiological repertoires. Examples are rat 

SPAG11E33,34 and rat DEFB1535 (the orthologue of human DEFB106B), 
which are differentially expressed in the caput epididymidis and found to 
affect sperm motility acquisition33,34 and sperm motility maintenance.35 
Primate DEFB126, on the other hand, is predominantly expressed in the 
corpus epididymidis and plays a role in the transport of spermatozoa 
in the female reproductive tract.36,37 More recently, the deletion of a 
subset of nine adjacent β‑defensin genes (Defb1, Defb2, Defb9, Defb10, 
Defb11, Defb13, Defb15, Defb35, and Defb50) located in a cluster in the 
mouse chromosome 8 was shown to significantly impair sperm function 
in vivo, by affecting the control of intracellular calcium and regulation 
of the acrosome reaction, which resulted in sterility.26 In addition, a 
common mutation in the human DEFB126 gene was reported to reduce 
sperm penetration ability into cervical mucus and was associated with 
a male subfertility condition.12 A detailed overview on β‑defensin and 
their impact on sperm function can be found in Dorin and Barratt.20 In 
spite of the above data, there is still the need for more studies focusing 
on the underlying mechanisms by which the sophisticated β‑defensin 
expression patterns, their functional repertoire and cross‑talk contribute 
to sperm maturation and protection in the epididymis.

REGULATION OF β‑DEFENSIN EXPRESSION IN THE 
POSTNATAL AND ADULT EPIDIDYMIS
Is an expression of β‑defensins under the regulation of infectious or 
inflammatory conditions in the epididymis? The data on this matter are 
still scarce and controversial. There are reports indicating no change38 
or an increase39 in different β‑defensin mRNA levels in tissues from the 
rat male reproductive tract following in vivo treatment with LPS from 
Escherichia coli. In a rat epididymitis model induced by Gram‑negative 
bacteria, however, Spag11e (Bin1b) mRNA levels decreased 3 days after 
infection.32 In other experimental models of epididymitis induced by 
LPS, Defb2, Defb21 and Defb27 mRNA levels decreased in the caput 
epididymidis,39,40 while other β‑defensins such as Defb29, Defb41 and 
Defb42 were unaffected by the treatment.40 Although the abundance of 
Spag11b (Bin1b) mRNA decreased following bacterial infection in the 
mouse epididymis,41 its overexpression gave mice added resistance to 
E. coli‑induced epididymitis.42 Although differences in the experimental 
models of epididymitis (whole bacteria vs bacterial products; time of 
infection or inflammatory induction; epididymal region evaluated, etc.) 
may be responsible for these various results, the scenario indicates the 
complex regulation of β‑defensin expression in the epididymis during 
inflammation or infection. This may have a significant impact on the 
clinical outcomes of epididymitis, a condition that often results in 
impairment of sperm function and fertility.32

Considering the host defense properties of β‑defensins, and the still 
limited information on the modulation of their gene expression and 
function in the epididymis, a closer investigation of the segment‑specific 
expression pattern of β‑defensins in response to infectious, or even 
noninfectious, epididymitis is interesting and should be pursued. Animal 
models of bacterial epididymitis established in the last few years31,32 are 
important tools to show experimentally the exact roles played by the 
various epididymal β‑defensins in epididymal physiology and pathology, 
either by themselves or in association with one another. It is known that 
LPS secreted by a Gram‑negative bacterium, such as E. coli, and the 
subsequent LPS‑induced inflammatory host response, together play a 
significant role as contributing factors to male infertility following cases 
of epididymitis and orchitis.31,32 The fact that human DEFB102 expression 
is induced in the epididymis in response to LPS from E. coli and other 
pro‑inflammatory agents raises the idea of β‑defensins as potential targets 
for the development of therapeutics in the prevention or treatment of 
infection‑ or inflammation‑related diseases.14,43
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Androgens, the primary modulators of epididymal structure, gene 
expression and function,4 are acknowledged as important regulators of 
epididymal β‑defensin expression in multiple species. In fact, a gradual 
upregulation of the mRNA levels of several rat and mouse epididymal 
β‑defensins is observed from early postnatal ages to adulthood, when 
timely increases in gonadal and plasma testosterone concentrations 
occur.22,35,44–47 In different species, the epididymis from castrated 
animals presents down‑regulation of different β‑defensin transcripts 
that is reversed in tissues from testosterone‑treated castrated animals, 
suggesting their positive androgen regulation.16,22,35,38,45–51 More recently, 
we discovered a down‑regulation in the β‑defensin Spag11c mRNA 
levels in the caput, but not in the cauda epididymidis from castrated 
adult rats, demonstrating that influence of androgens on β‑defensin 
expression is dependent on the epididymal region analyzed.44 In 
addition, mouse Spag11a (Bin1b)50 and Spag11c mRNA levels44 were 
not fully maintained at normal levels in the caput epididymidis from 
testosterone‑treated castrated rats, suggesting that their expression is 
not only dependent on androgens, but also on luminal testicular factors. 
Furthermore, the SPAG11C immuno‑distribution is differentially 
affected by androgen deprivation and testosterone treatment, not only 
in a region‑dependent, but also a cell‑specific, fashion in the adult 
rat caput and cauda epididymidis.44 The identification of androgen 
receptor (AR) response elements in the 5’‑flanking region of β‑defensin 
genes of different species has provided further proof of the potential 
androgen modulation of these genes.52,53 By using ChIP‑PCR/qPCR 
assays, Hu et  al.53 studied the binding of AR to AREs identified in 
mouse caput β‑defensin genes. They observed twelve genes presenting 
AR binding sites in their promoter or intronic regions  (indicating 
direct regulation of these genes by AR), another six exhibiting an 
androgen‑independent expression pattern and yet one gene showing 
high dependence on testicular factors rather other than androgens, 
thus confirming defensins’ differential androgenic regulation depends 
on the epididymal cell type and region analyzed.

Furthermore, by contrasting the differential mRNA expression 
profile of six different splicing variants originating from the SPAG11B 
gene in fetal and adult reproductive and nonreproductive tissues from 
bulls,19 our group raised the hypothesis of differential mechanisms 
contributing to the modulation of β‑defensin expression in the 
developing epididymis. Likewise, our most recent work focusing 
on the expression of a β‑defensin in the prenatal and postnatal rat 
epididymis44 has shed light on a novel understanding of the putative 
roles of β‑defensins in epididymal ontogenesis, which we discuss below.

β‑DEFENSINS IN THE PRENATAL AND POSTNATAL 
EPIDIDYMIS – EVIDENCE OF NEW PHYSIOLOGICAL ROLES?
During epididymal development, the formation of the straight 
Wolffian duct (WD), the anlage of the epididymis, and its progression 
to the three‑dimensionally coiled and highly regionalized postnatal 
epididymis depends on a highly coordinated succession of molecular 
and morphogenic events involving a complex and essential interplay 
of different modulatory factors, primarily androgens.54 Briefly, the 
rat fetal testis begins to secrete testosterone at the embryonic age of 
15.5 days (E15.5),55 1 day after the detection of AR in the mesenchyme 
of the WD. Peak prenatal plasma concentrations peak between E17.5 
and E18.5,56,57 which precedes the coiling of the future epididymis.58–60 
During this period, androgens act indirectly on WD epithelium by 
androgen‑dependent mesenchymal‑derived regulators and, shortly 
after E18.5, directly through the AR that is now expressed by the WD 
epithelium.61,62 Disorders of androgens and AR signaling in this critical 
period of WD development, due to congenital causes or exposure to 

endocrine disruptors, impair reproductive tract masculinization and 
normal epididymal development, resulting in later infertility during 
adulthood.58–60 After another plasma testosterone peak that occurs 
shortly after birth,63 a low plasma level of this steroid hormone is 
maintained in immature animals, increasing steadily throughout 
puberty, plateauing in adulthood.64 Postnatal growth and differentiation 
of the rat epididymis is composed of an undifferentiated period between 
1 and 15 days of age, a differentiation phase between 15 and 44 days, 
followed by an expansion period from 44 days of age to adulthood.4

Recently, we reported that significant temporal, cell‑type and 
region‑specific changes occur in the expression of the β‑defensin 
Spag11c gene as the rat epididymis develops from prenatal to 
postnatal life.44 Spag11c mRNA, detected as early as E12.5 in rat 
WD, increased in expression at E17.5 and decreased at E20.5, a 
period when the androgen‑induced differentiation of WD into 
epididymis occurs  (Figure  1a and 1c). Unexpectedly, SPAG11C 
immuno‑localization in WD mesenchymal cells gradually switched 
after birth  (after postnatal 20  days of age) to a more predominant 

Figure  1: Spatiotemporal expression of the β‑defensin SPAG11C in the 
developing rat epididymis. (a) Spag11c mRNA was detected by end‑point 
RT‑PCR in the male Wistar rat urogenital rudiment as early as embryonic 
day 12.5 (E12.5), before the onset of androgen receptor  (AR) expression 
and testosterone synthesis in the embryo. Increased Spag11c mRNA levels 
were observed in the Wolffian duct (WD) at E17.5, in contrast to decreasing 
levels detected at E20.5, when the WD morphologically differentiates into 
the epididymis under androgen influence. In the adult rat epididymis, 
Spag11c mRNA was more abundant in the caput (Cap) than in corpus (Cor) 
or cauda  (Cau) epididymidis. The housekeeping gene Gapdh was used 
as an endogenous control.  (b) Immunofluorescence studies performed in 
paraffin‑embedded sections from whole fetuses  (E18.5) and adult caput 
epididymidis (120 days old, P120) revealed that SPAG11C was prenatally 
mainly located in mesenchymal cells of the anterior WD  (the future 
epididymis) (left panel), shifting gradually to epithelial cells after birth and 
became mainly distributed in the epithelium of adult caput epididymidis (right 
panel). Nuclei were stained with DAPI (blue). lu: lumen; ms: mesenchyme; ep: 
epithelium; in: interstitium. (c) Schematic representation of SPAG11C (mRNA 
levels and immunolocalization) developmental changes in the rat WD and 
adult epididymis. Relative expression levels were represented by a gradient 
of blue shades ranging from white (minimal intensity) to dark blue (maximal 
intensity) based on RT‑qPCR data.44 P: postnatal day. Results from panels 
(a) and (b) are representative of previously published data by our group.44
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localization in the epididymal epithelia that persisted into adulthood 
(Figure 1b and 1c). The hypothesized effects of SPAG11C on cellular 
growth and differentiation during tissue morphogenesis were further 
supported by the ubiquitous distribution of Spag11c mRNA in fetal 
rat reproductive and nonreproductive organs versus the preferential 
and abundant expression of Spag11c in the postnatal rat epididymis.44

Does the differential expression of β‑defensins in the epididymis 
between prenatal and postnatal life reflect distinct biological roles 
or specific regulatory mechanisms throughout its lifespan? What 
ultimately drives the dynamic changes of the spatio‑temporal 
expression of SPAG11C in the developing epididymis? We do not 
have answers for these questions. Since expression of Spag11c mRNA 
in the rat urogenital ridge is detected as early as E12.5, before the 
onset of testosterone (Figure 1a), other collaborative developmental 
factors besides androgens may be important for the regulation of the 
expression levels of this particular β‑defensin.

Preliminary RT‑PCR studies from our group with WDs collected 
at E17.5 and E20.5 indicated, however, that the mRNA expression of 
five other β‑defensins were either not readily detected at these two 

embryonic time points  (Spag11e and Defb12) or only observed in 
WDs at the latter E20.5 time point (Defb1, Def2 and Defb22; Figure 2). 
The discovery of this differential expression pattern between Spag11c 
and these other β‑defensins in the WD contrasts with constitutive 
expression in the adult epididymis (Figure 2). Thus, this additional 
layer of complexity of β‑defensins in the prenatal versus postnatal 
epididymis may provide clues to additional physiological roles for 
these multifaceted proteins.

The mechanisms of action of β‑defensins and how they respond 
in expression and function to insults, or changes in steroid hormone 
concentration during embryonic life, are not well understood and are 
now the subject of investigation in our laboratory. Together, these findings 
constitute a baseline for future studies addressing how β‑defensins 
contribute to the achievement and maintenance of male fertility. 
In addition, the understanding of β‑defensin roles is of clinical and 
therapeutic relevance, since it can be instructive not only in identifying 
their involvement in phenotype and disease susceptibility, including male 
infertility but also in helping the identification of novel druggable targets.

CONCLUSIONS AND PERSPECTIVES
There has been a great deal of scientific interest in recent years in 
studying the function of β‑defensins in the “normal” epididymis since it 
may provide clues on how they contribute to physiological conditions. 
Several questions still remain, however, concerning the in vivo role 
of these proteins and their effects on epididymal function and sperm 
maturation. What are the relevant conditions for the control of 
β‑defensin expression and function in the epididymis? Developmental? 
Physiological? Pathological? Acute, chronic or both? Could β‑defensins 
have relevance as key biomarkers of developmental events or as 
targets for the treatment of diseases in the developing epididymis 
after injuries or anti‑infectious/inflammatory responses? These are 
interesting and fascinating hypotheses to be addressed experimentally 
in further studies and then translated into the clinical setting. Aside 
from their known action in host defense, the understanding of the 
full physiological range of the β‑defensin functions in the epididymis 
may expand their therapeutic potential in sperm protection and male 
fertility optimization, and beyond.
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