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Heparan sulfates and heparins:
similar compounds performing
the same functions in vertebrates
and invertebrates?
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Abstract

The distribution and structure of heparan sulfate and heparin are
briefly reviewed. Heparan sulfate is a ubiquitous compound of animal
cells whose structure has been maintained throughout evolution,
showing an enormous variability regarding the relative amounts of its
disaccharide units. Heparin, on the other hand, is present only in a few
tissues and species of the animal kingdom and in the form of granules
inside organelles in the cytoplasm of special cells. Thus, the distribu-
tion as well as the main structural features of the molecule, including
its main disaccharide unit, have been maintained through evolution.
These and other studies led to the proposal that heparan sulfate may be
involved in the cell-cell recognition phenomena and control of cell
growth, whereas heparin may be involved in defense mechanisms
against bacteria and other foreign materials. All indications obtained
thus far suggest that these molecules perform the same functions in
vertebrates and invertebrates.
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Heparan sulfates from mammalian
and other vertebrate tissues

Among the sulfated glycosaminoglycans,
heparan sulfate, a ubiquitous cell surface
component of mammals and other verte-
brates, is the one that exhibits the highest
structural variability according to the tissue
and species of origin (1-12). This class of
compounds comprises linear polymers com-
posed of several distinct disaccharide units
containing glucuronic or iduronic acid and
glucosamine with N- and 6-O-sulfates and

N-acetyl substitutions. The presence of other
disaccharide units, which occur in smaller
proportions and contain sulfate attached to
their uronic acid residues, has also been
identified in heparan sulfates (11,12). The
order in which these disaccharide units oc-
cur in the molecule was first established for
the heparan sulfate derived from rabbit en-
dothelial cells in culture (11). Recently the
total sequence of the disaccharides from bo-
vine pancreas and the partial sequence of
seven other heparan sulfates of mammalian
origin have also been established (8,13). It
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was concluded from these studies that all the
mammalian heparan sulfates contain com-
mon structural features such as an N-acety-
lated and an N-sulfated domain consisting of
glucuronic acid-containing disaccharides and
a more sulfated region consisting of iduronic
acid-containing disaccharides. A peculiar
tetrasaccharide, namely GlcNAc-(a1-4)-
IdoUA-(a1-4)-GlcNS-(a1-4)-IdoUA, posi-
tioned between the two regions, was identi-
fied in all the heparan sulfates analyzed. It
was also shown that the non-reducing ends

of the heparan sulfates contain the monosac-
charides glucosamine N-sulfate or glu-
cosamine 2,6 disulfate (13,14). Figure 1 sum-
marizes these findings. Partial sequences of
other heparan sulfates of different origins
such as liver have also been recently de-
scribed (12).

Heparan sulfate in invertebrates

By degradation with heparitinases and
heparinase from Flavobacterium heparinum

Figure 1 - Proposed structures
of heparan sulfates from differ-
ent mammalian tissues. R, Pro-
tein linkage region. IdoA, a-L-
Iduronic acid; GlcA, ß-D-glucu-
ronic acid; GlcN, a-D-glu-
cosamine; GlcNAc, a-D-N-acetyl-
glucosamine; S, sulfate.
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as well as electrophoretic migration in dif-
ferent buffer systems of the sulfated polysac-
charides extracted from 22 species of the
main classes of invertebrates, it was sug-
gested that heparan sulfate-like and/or hep-
arin-like compounds were present in all tis-
sue-organized species analyzed (15). In a
more recent survey of more than 50 inverte-
brates from different classes using the same
methodology, it was shown that heparan
sulfate was a ubiquitous compound as de-
picted in Figure 2 (Medeiros GF and Nader
HB, unpublished data). Other authors have
also reported the presence of sulfated gly-
cosaminoglycan-like compounds in some
species of invertebrates (16-24).

These studies were further extended to
different tissues of the mollusc Pomacea sp
(25). Figure 3 shows that all tissues analyzed
contain heparan sulfate-like, chondroitin sul-
fate and other unidentified polymers. A sub-
sequent study using invertebrate species from
habitats with different degrees of salinity,
including a vicarious one (26), has shown
that the concentration of heparan sulfate was
directly proportional to the salt concentra-

tion of the habitat (Figure 4).
Conclusive evidence that these heparan

sulfates from invertebrates were undistin-
guishable from the ones of mammalian ori-
gin came from the isolation and purification
of these compounds from three species of
molluscs, namely, Pomacea sp, Tagelus gib-
bus and Anomalocardia brasiliana (27).
Chemical analyses and enzymatic degrada-
tion have shown the presence of the same
disaccharide units present in mammalian
heparans. This was further confirmed by 13C
nuclear magnetic resonance spectrometry
where, as shown in Figure 5, the heparan
sulfate from the mollusc Anomantidae sp
was undistinguishable from bovine pancreas
heparan sulfate (28). As shown in Figure 6,
the disaccharide units of this last heparan
sulfate were also recently sequenced (29).

A heparan sulfate with some interesting
characteristics was also isolated from the
brine shrimp Artemia franciscana. This
heparan sulfate, although containing the same
disaccharide units found in the other verte-
brate and invertebrate heparans, has a differ-
ent electrophoretic migration. COSY and

Figure 2 - Distribution of sulfated
glycosaminoglycans in the ani-
mal kingdom.
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TOCSY nuclear magnetic resonance (NMR)
spectroscopy has shown that this heparan
was extremely rich in non-sulfated iduronic
acid residues. It was also shown that the
content of non-sulfated N-acetylated disac-
charide was low and accounted for 3-5% of
the total disaccharides of the molecule when
compared to those of mammalian origin
which accounted for 20-60% of the mol-
ecules (30). Another heparan sulfate iso-
lated from the lobster Homarus americanus
also showed different characteristics from
those of heparan sulfates isolated from mam-
mals, such as enrichment in disaccharides
containing glucuronic acid residues (24).

Heparin in mammalian and other
vertebrate tissues

Unlike heparan sulfate, heparin is present
only in some tissues of vertebrates, as shown
in Figure 7. For instance, heparin is absent or
occurs in small amounts in brain, muscle and
kidney of most species (for a review, see
Ref. 31). Also, a wide variation in the con-
centration of heparin was observed when the
same tissue of different species was com-
pared. In general, heparin is usually present
in tissues that are in direct contact with the
environment such as lung, skin and intestine.
Of particular significance was the observa-
tion that rabbit tissues do not contain hep-
arin. Non-mammalian vertebrate tissues con-
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Figure 5 - [13C]-NMR of mammalian and mollusc heparan sulfates. G, Glucuronic
acid; H-NAc, ANAc, N-acetylated glucosamine.

Figure 6 - Proposed structure of heparan sulfate from the mollusc Anomantidae sp. IdoA, a-L-Iduronic acid; GlcA, ß-D-
glucuronic acid; GlcN, a-D-glucosamine; GlcNAc, a-D-N-acetylglucosamine; S, sulfate.
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Figure 7 - Distribution of heparin
in vertebrate tissues.
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tain smaller amounts of heparin when com-
pared to those of mammalian origin. An
exception to this rule was the finding that
chicken skin contains relatively large amounts
of heparin (32).

Heparin in invertebrates

Suggestions for the presence of heparin
in invertebrates came from the work of
Burson et al. (33). These authors have iso-
lated from the molluscs Spisula solidissima
and Cyprinia islandica a polysaccharide de-
noted mactin, composed of glucuronic acid,
glucosamine and sulfate, which possesses
anticoagulant activity. Similar studies have
shown that Anodonta sp (34), Anomalocardia
brasiliana and Mesodesma donacium (15)
contain similar polysaccharides.

Unlike heparan sulfate, heparin was only
found in some species of invertebrates, e.g.,
molluscs and crustaceans (Figure 2). The
distribution of heparin in different tissues of
the mollusc Anomalocardia brasiliana (35)
has revealed that the highest concentration
of heparin was found in tissues that are in
direct contact with the environment (Figure
8), similar to the distribution found for hep-
arin in vertebrates. Histological examination
of the tissues has shown that heparin is pres-
ent in special cells forming granules, sug-
gesting that the mollusc also contains mast
cells (35).

Figure 8 - Distribution of heparin in different tissues of the mollusc Anomalocardia brasiliana.
Other, heparan sulfate, chondroitin sulfate and unknown sulfated polysaccharides.

Using heparinase and heparitinase II from
Flavobacterium heparinum, it was possible
to draw a general picture of the structure of
heparin, as shown in Figure 9. Heparin seems
to be composed of two different regions, one
susceptible to heparinase whose action upon
the compound produces a trisulfated disac-
charide and sulfated tetrasaccharides, and
another less sulfated region, which is sus-
ceptible to the action of heparitinase II. This
last region seems to contain disaccharides
with glucuronic acid residues, as judged by

Heparinase Heparinase Heparinase Heparinase II Heparinase II Heparinase II

Heparinase II

Molluscs

n1 n2
Bovine lung 6 1

Bovine intestine 6 4
Anomalocardia brasiliana 8 8

Donnax striatus 4 5
Tivela mactroides 3 5

Figure 9 - Proposed structure of heparin in mammals and invertebrates.
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[13C]-NMR spectroscopy (see below). The
length and abundance of these two regions
vary according to the origin of heparin. Thus,
bovine lung heparin is extremely rich in the
region susceptible to heparinase (36),
whereas bovine intestinal heparin and mol-
lusc heparins contain significant amounts of
the region susceptible to heparitinase II (37-
41). The estimated abundance of the two
regions is shown in Figure 9. Besides the
disaccharides depicted in the figure, other
disaccharide units which occur in small
amounts in the molecule have been identi-
fied such as disaccharides containing 3-O
sulfated residues in the glucosamine moiety
(42) and N-acetylated glucosamine (43).

Besides being susceptible to specific en-
zymes the heparin from Anomalocardia
brasiliana possesses all the other properties
characteristic of heparin such as anticoagu-
lant and other pharmacological activities
(38,40) and chemical degradation (38). NMR
spectroscopy has shown that the mollusc

Figure 10 - [13C]-NMR of mam-
malian and mollusc heparins.

Figure 11 - [1H]-NMR of IdoA,2S-
GlcNS,6S formed from mamma-
lian and mollusc heparin by ac-
tion of heparinase. Upper panel,
Mammalian heparin; lower
panel, mollusc heparin.
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heparin was undistinguishable from those of
mammalian origin (41). Figure 10 shows the
[13C]-NMR spectroscopy of heparins ob-
tained from two species of molluscs com-
pared to a mammalian heparin. Note that the
main chemical shifts are present in the mam-
malian and mollusc heparins. The one de-
rived from Tivela mactroides also contains
signals attributed to the nonsulfated uronic
acid residues. The [1H]-NMR spectroscopy
of the main repeating disaccharide unit ob-
tained from mollusc and mammalian hep-
arin by heparinase shown in Figure 11 indi-
cates that they contain the same signals with
identical chemical shifts, confirming the iden-
tity of these heparins.

Conclusions

These studies indicate that heparan sul-
fate is a ubiquitous compound of animal

cells, whose structure has been maintained
throughout evolution, showing an enormous
variability regarding the relative amounts of
its disaccharide units. Heparin, on the other
hand, is present only in a few tissues and
species of the animal kingdom in the form of
granules inside organelles in the cytoplasm
of special cells. Thus, the distribution as well
as the main structural features of the mol-
ecule, including its main disaccharide unit,
have been maintained throughout evolution.

These and other studies (9,44,45) have
led to the proposal that heparan sulfate may
be involved in the cell-cell recognition phe-
nomena and control of cell growth, whereas
heparin may be involved in defense mecha-
nisms against bacteria and other foreign
materials (31). All indications obtained so
far suggest that these molecules perform the
same functions in vertebrates and inverte-
brates.
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