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Sleep is important for maintenance of skeletal muscle health. Sleep debt can induce muscle atrophy by
increasing glucocorticoids and decreasing testosterone, growth hormone and insulin-like growth fac-
tor-I. These hormonal alterations result in a highly proteolytic environment characterized by decreased
protein synthesis and increased degradation. Given that sleep deprivation is increasingly prevalent in
modern society, strategies to minimize or reverse its adverse effects need to be investigated. Resistance
exercise has been suggested as an intervention that would benefit the muscle health. The practice of this
type of exercise can increase the concentration of testosterone, growth hormone and insulin-like growth
factor I and stimulate the protein synthesis through a key signaling molecule, mammalian target of rap-
amycin. Thus, we hypothesized that resistance exercise is an important non-pharmacological strategy to
counteract deleterious effects of sleep debt on skeletal muscle.

� 2013 Elsevier Ltd. Open access under the Elsevier OA license.
Background

The importance of sleep has been consolidated in several phys-
iological aspects [1,2]. Population studies have shown that the time
available for sleep has considerably decreased during last decades,
especially in most industrialized countries, generating a chronic
sleep debt in the population, which turned out to be an important
public health problem, with large impacts on the economy [3–5].
The persistent reduction of sleep duration and/or quality can in-
duce several adverse effects on health, increasing the risk for
chronic diseases such as cardiovascular diseases, metabolic syn-
dromes, cancer, among other [5–9].

One of the most common physiological alterations observed
after sleep deprivation is hormone secretion pattern. Several stud-
ies have demonstrated that sleep deprivation results in a catabolic
state because blood testosterone [10], insulin [11], insulin-like
growth factor-I (IGF-I) and growth hormone (GH) [12] are reduced,
whereas cortisol (in humans) [13] and corticosterone (in rats) [10]
are increased under these conditions.

The muscle health is strongly influenced by hormonal secretion.
Testosterone, GH and IGF-1 are known to increase the activity of
protein synthesis through phosphatidylinositol-3 kinase/protein
tro, 93. Vila Clementino, São
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kinase B pathway (PI3K/Akt). Thus they are anabolic hormones
[16]. On the other hand, corticosterone/cortisol increases ubiquiti-
nation and proteasomal degradation pathway [17]. Thus, typical
hormonal secretion patterns induced by sleep debt may decrease
protein synthesis and increase protein degradation. These altera-
tions can modify the body composition and potentially impair skel-
etal muscle health [14,15].

In fact, Dattilo and colleagues (2012), showed that the tibialis
anterior muscle and its fibers cross-sectional area were reduced
after paradoxical sleep deprivation in rats [10]. These data corrob-
orate the findings of Nedeltcheva et al. (2010), who observed that
sleep restriction in humans enhances the effects of low-calorie diet
on muscle mass loss [15].

Considering that sleep debt is becoming more common in the
general population [1,2,4], it seems to be extremely important to
develop strategies that can minimize or even reverse harmful ef-
fects of sleep deprivation. Among many alternatives, physical exer-
cise, especially resistance training, appears to be an interesting
non-pharmacological strategy against the deleterious effects of
sleep debt. Physical exercise is essential for healthy lifestyle and
feasible for most of population, with only minor contraindications.
Moreover, it has low cost and provides many other benefits to
health. Here we discuss how physical exercise, specifically resis-
tance exercise (RE), is important for maintenance of skeletal mus-
cle tissue health [18] and it may overturn muscle atrophy caused
by sleep debt.
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Hypothetical profile of protein synthesis and degradation in sleep debt

The muscle mass is mainly regulated by the balance between
protein synthesis and degradation. Higher activity of synthetic
pathways over degradation pathways results in muscle fiber
hypertrophy, and the opposite situation results in muscle atrophy
[19]. Protein synthesis requires the activation of translation factors
(eukaryotic initiation, elongation and release limiting factors –
eIFs, eEFs and eRFs, respectively), which occurs through a cascade
of reactions [20]. The PI3K/Akt pathway, which can be stimulated
by IGF-1, is one of the important signaling cascades in protein syn-
thesis. It inhibits protein kinase glycogen-3 (GSK-3b) and activates
the mammalian target of rapamycin (mTOR) [16]. The mTOR sig-
naling pathway has a wide range of functions, which culminate
in hormonal, nutritional, mechanical, hypoxic and cellular stress
signals including the regulation of protein synthesis, cell prolifera-
tion, apoptosis and autophagy [21]. Two subsequent downstream
proteins of mTOR are p70 ribosomal protein S6 kinase (p70S6K)
and eukaryotic translation initiation factor 4-E binding protein 1
(4EBP1). These molecules regulate ribosomal biogenesis and
eukaryotic translation initiation factor 4E (eIF4E), respectively.
Thus, mTOR is a critical regulator of protein synthesis and cell
growth [22].

Testosterone is an anabolic signal molecule, which acts on cell
structures stimulating cell growth. In addition to the regulation
of gene expression and activation of satellite cell, testosterone also
indirectly stimulates mTOR activity by inhibiting REDD1 (regu-
lated in development and DNA damage responses 1), which nega-
tively regulates mTOR [23]. Moreover, testosterone can inhibit the
expression of myostatin, a potent inhibitor of muscle growth
[24,25]. Another hormone capable of enhancing the protein syn-
thesis pathways is GH. Binding of GH to its membrane-bound
receptor initiates Janus kinase 2 (JAK2) signaling. JAK2 has several
downstream substrates that signal a variety of cellular functions.
Of particular importance, GH-induced JAK2 signaling activates
PI3K and, thereby, the previously mentioned Akt/mTOR protein
synthesis pathway [26].

Unlike anabolic signal, the cortisol (in human) and corticoste-
rone (in rats) activate the major protein degradation pathway,
the ubiquitin–proteasome system, inhibit IGF-1 production in
muscle [27,28] and enhance the transcription of REED1, resulting
in reducd mTOR activity and its targets [29]. The ubiquitin–protea-
some system plays an important role for the degradation of long-
lived myofibrillar proteins in skeletal muscle. Two important E3
ubiquitin ligases, atrogin-1 (or MAFbx) and muscle RING-finger
protein-1 (MuRF-1) [17,30], are regulated by forkhead transcrip-
tion factor (FoxO) family members and target myofibrillar proteins
for degradation [31].

Considering that 85% of muscle proteins are composed of myo-
fibrillar proteins, conditions that alter the balance between synthe-
ses and degradation of myofibrillar proteins may contribute to
muscle hypertrophy or atrophy. Thus, hormonal responses to sleep
debt can lead to muscle atrophy by altering the balance of protein
synthesis/degradation [10].
Resistance exercise and modulation of protein synthesis

RE is one of the popular physical activity that improves muscu-
loskeletal health [32,33]. The physiological adaptations to RE indi-
cate that mechanical loading, hormonal and metabolic changes,
and diverse intracellular events contribute to increased strength
and muscle protein synthesis [33,34].

The possible mechanisms of how RE modulates muscle mass
seem to be related to the IGF-I [35], which activates the PI3K/
Akt/mTOR pathway and induces the protein synthesis, resulting
in muscle growth [34]. Moreover, the mechanical deformation of
muscle fibers (contraction and/or stretching), that is an acute effect
of RE, is capable to activate the Akt/mTOR pathway, regardless of
hormonal changes and immune/inflammatory responses [36].

As mentioned previously, Akt phosphorylates and activates
mTOR during muscle overload [36,16]. However, other studies
have shown that mechanical deformation can activate mTOR in a
PI3K/Akt independent manner [37,38]. Studies with Akt knockout
animals showed increased mTOR activity during mechanical stim-
ulation [37,39,40]. Mechanical stimuli increase phospholipase D,
which results in phosphatidylcholine hydrolysis and produces
phosphatidic acid (PA) and choline. PA phosphorylates mTOR in
FRB (FKBP Rapamycin binding) domain and activates p70S6K,
increasing protein synthesis [38]. These large protein interactions
possibly occur in the sarcomere through a giant structural protein
of sarcomere, the titin, which transmits the information from con-
tractile machinery to the nucleus, affecting gene expression. The ti-
tin is located in Z-disk and extends through M-band that contains a
serine/threonine kinase domain involved with sarcomere contrac-
tion and stretching [41–43].

In addition to the acute effect described above, long term RE can
evoke chronic anabolic hormonal response by increasing GH, IGF-I
and testosterone release [44–48], which activate the PI3K/Akt/
mTOR pathway and stimulates the synthesis of myofibrillar pro-
teins. Also, phosphorylation of FoxO decreases the activity of ubiq-
uitin–proteasome system and muscle proteolysis [41,49]. IGF-I
also contributes to muscle growth by stimulating satellite cell pro-
liferation and differentiation [20].
Can resistance training minimize or reverse the muscle atrophy
process stimulated by sleep debt?

The resistance exercise is beneficial for prevention and treat-
ment of various health disorders: it improves blood glucose levels,
insulin sensitivity [50,51], bone mass [54] and mental health [56].
It prevents from prehypertension state or stage 1 hypertension
[52] and metabolic syndrome [53]. RE can also reduce pain and dis-
ability in rheumatic diseases [55]. This type of physical exercise is
widely practiced around the world, has low cost to the general
population and is an important tool for health promotion. Thus,
we believe that the muscle and endocrine responses generated
by resistance exercise can minimize or even nullify the deleterious
effects of sleep debt on skeletal muscle.

Under normal conditions, RE-induced muscular adaptations are
an integrated sequence of events. Acute responses, such as hor-
monal, mechanical and metabolic changes, result in modifications
of protein turnover, which can result in chronic adaptation (in-
creased cross-sectional area of muscle fibers) in long-term [57].
As described above, peripheral and intracellular signals (mechani-
cal and hormonal stimuli) converge into these adaptations, and
mTOR serves as the master regulator of effectors involved in pro-
tein synthesis [16] (detailed in Fig. 1).

Conversely, we speculate that sleep debt-induced muscle atro-
phy follows the same pathway of RE, but in the opposite direction.
That is, the hormonal pattern induced by sleep debt is a potential
suppressor of mTOR activity, and resistance exercise provides a po-
tential non-pharmacological intervention for skeletal muscle vol-
ume maintenance (as detailed in Fig. 2).
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Fig. 1. mTOR: mammalian target of rapamycin, GH: growth hormone, IGF-I: insulin-like growth factor I, eIF2B: eukaryotic initiation factor-2B, PI3K: phosphatidylinositol-3,
Akt: protein kinase B, 4EBP1: eukaryotic translation initiation factor 4-E binding protein 1, p70S6K: p70 ribosomal protein S6 kinase, REDD1: regulated in development and
DNA damage responses 1, atrogin-1/MAFbx: ubiquitin ligase atrogin1/muscle atrophy F-box, FoxO: forkhead transcription factor, MuRF-1: muscle RING-finger protein-1, PLD:
phospholipase D, PA: phosphatidic acid, GSK-3b: protein kinase glycogen-3. ; activation; \ inhibition.

Fig. 2. PD: protein degradation, PS: protein synthesis. (a) Debt sleep promotes catabolic environment leading higher protein degradation than protein synthesis. (b) The
resistance exercise leading greater protein synthesis than degradation. (c) The hypothesis study: resistance exercise can minimize or reverse the protein degradation
generated by sleep debt, keeping skeletal muscle tissue volume.
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