
Figure 5. Tetraploid cells develop a higher number of numerical and structural chromosomal abnormalities over time in culture when
compared with diploid cells. Spectral karyotyping (SKY) was used to assess numerical and structural abnormalities in SF3061-Vector
and isolated diploid and tetraploid cells from SF3061-HES1 stable cell populations. (A) Representative SKY metaphases from control
nonneoplastic arachnoid (Arachnoid) cells, SF3061-Vector (Diploid), and SF3061-HES1 (Tetraploid) cells are shown. (B and C) SKY
karyograms of a diploid metaphase from SF3061-Vector cells at passage 19 (B) and a tetraploid metaphase from SF3061-HES1 cells
at passage 19 (C) are shown. Chromosome numbers (white) are indicated.

Table 1. Numerical and Structural Chromosomal Abnormalities in SF3061 Meningioma Cells.

Stable Cell Population Passage Number Number of Metaphases Analyzed Total Number of Translocations Translocations per Metaphase Mean Number of Chromosomes
per Metaphase

SF3061-Vector 8 15 138 9.2 42.8
SF3061-HES1 Tetraploid 8 15 289 19.3 89.3
SF3061-Vector 19 15 141 9.4 42.9
SF3061-HES1 Tetraploid 19 15 426 28.4 117.6
SF3061-HES1 Diploid 19 8 71 8.9 42.3
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clearly demonstrated in Barrett esophagus, a premalignant condition
where patients are regularly followed by endoscopic biopsies [29,30].
A careful analysis of these patients has revealed the relatively early loss
of p53, the acquisition of a significant population of tetraploid cells,
and the subsequent development of aneuploidy. Also, in some tumor
models, such as the elastase–simian virus 40 tumor antigen transgenic
mouse model of pancreatic cancer, an increase in a tetraploid popula-
tion of cells is detected early in the development of tumor [31].
Tetraploid cells are normally cell cycle–arrested and undergo apop-

tosis if there is an intact tetraploidy checkpoint [32]. Also, a dis-
rupted p53 pathway has been proposed as being essential for the
survival of tetraploid cells [32]. In our study, tetraploid meningioma
cells associated with HES1 expression were viable albeit with a slightly
elevated apoptotic rate suggesting that the meningioma cell lines used
have a defective tetraploidy checkpoint. It is likely that any tetraploid
cells generated by transfecting HES1 in untransformed cells that have
robust cell cycle checkpoints would be eliminated.
In vivo, we anticipate that tetraploid meningioma cells without the

ability to evade apoptosis will die. Only cells with another cellular
defect such as a disrupted p53 pathway would survive. This could po-
tentially occur through a “prior genetic hit” that has provided a growth
advantage to the cell. A more likely scenario is that the genetically un-
stable tetraploid cell itself acquires a mutation or translocation that
provides a selective growth advantage allowing it to propagate.
Previous studies have shown that primary meningioma tumors con-

tain tetraploid cells and exhibit chromosomal instability. Fluorescence
in situ hybridization studies aimed at investigating chromosomal aber-
rations in meningiomas have frequently detected tetraploid cells [33–35].
One study, investigating chromosome 14q32 loss in 124 meningio-
mas, found tetraploid cells in 26% of meningiomas [33]. Using flow
cytometry, a hyperdiploid phenotype was observed in 30% (44/124
tumors) of meningioma cases analyzed [36]. In a separate study, spe-
cific features of chromosomal instability have also been found at high
frequency in meningiomas [37]. Early passage short-term primary
cultures from 61 meningiomas were analyzed and shown to have cells
with aberrant nuclear morphology including multinucleated cells,
anaphase bridges, chromatin strings and nuclear blebs [37]. Chromo-
somal aberrations including ring chromosomes, telomere associations,
and dicentric chromosomes were observed. A hyperdiploid karyotype
was found in 47.5% of these tumors. The authors concluded that
even slow-growing tumors such as meningiomas display chromosomal
instability [37]. Our studies suggest that deregulation of the Notch
signaling pathway is a potential mechanism that is responsible for
this phenotype.
Notch has previously been implicated in the control of ploidy

under certain cellular contexts. In the endocycle, DNA replication
is uncoupled from mitosis allowing cells to dramatically increase their
DNA content above diploid values. Drosophila follicle cells divide
mitotically and increase in number until mid-oogenesis when they
exit the mitotic cycle and enter the endocycle. The Notch signal-
ing pathway controls this mitotic/endocycle switch. Loss of Notch
or Delta results in the failure of these cells to form endocycles
[38,39]. Similarly, in humans, megakaryocytes are specialized pre-
cursors of platelets that are polyploid. The Notch signaling pathway
has been implicated in the generation of these polyploid mega-
karyocytes, although the mechanism of Notch function in this pro-
cess is not understood [40,41]. Finally, in Caenorhabditis elegans, a
gain of function mutation in glp1, an ortholog of Notch, prevents
primordial germ cells from making the mitosis to meiosis switch

(equivalent to twice the “normal” DNA content) and leads to the
overgrowth of primordial germ cells and the formation of germline
tumors [42]. In human germ cell tumors (seminomas and carcinoma
in situ), Notch2 and Notch4 are over-expressed, and it has been pro-
posed that deregulation of Notch causes dysfunction of the mitotic to
meiotic switch leading to abnormal chromosomal segregation and the
generation of aneuploid cells [43]. Thus, one of the many functions
of the Notch signaling pathway in certain cell types is the regulation
of ploidy. Our data show that meningiomas are one such cell type.

Tetraploidy can be induced by external signals or mutations that
result in either cell fusion or an abortive cell cycle including defects
in DNA replication, sister chromatid separation, mitotic spindle as-
sembly, mitotic checkpoint regulation, or cytokinesis [21,44]. The
aberrant expression of proteins regulating the G2/M phase transition
such as Aurora A, cyclin B1, forkhead transcription factor M3, and
mitotic spindle checkpoint proteins such as Bub and Mad have been
shown to induce tetraploidy [45,46]. It is possible the Notch signal-
ing induces tetraploidy by impacting expression of one or more of
these proteins. Understanding the mechanism by which Notch sig-
naling induces tetraploidy in meningiomas remains to be determined
and will be an important topic of future work.

In conclusion, our data identify a function for Notch signaling
in inducing chromosomal instability in meningiomas and potentially
contributing to meningioma tumorigenesis.
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Abstract
Meningioma tumor growth involves the subarachnoid space that contains the cerebrospinal
fluid. Modeling tumor growth in this microenvironment has been associated with widespread
leptomeningeal dissemination, which is uncharacteristic of human meningiomas. Conse-
quently, survival times and tumor properties are varied, limiting their utility in testing
experimental therapies. We report the development and characterization of a reproducible
orthotopic skull-base meningioma model in athymic mice using the IOMM-Lee cell line.
Localized tumor growth was obtained by using optimal cell densities and matrigel as the
implantation medium. Survival times were within a narrow range of 17–21 days. The
xenografts grew locally compressing surrounding brain tissue.These tumors had histopatho-
logic characteristics of anaplastic meningiomas including high cellularity, nuclear pleomor-
phism, cellular pattern loss, necrosis and conspicuous mitosis. Similar to human meningio-
mas, considerable invasion of the dura and skull and some invasion of adjacent brain along
perivascular tracts were observed. The pattern of hypoxia was also similar to human malig-
nant meningiomas. We use bioluminescent imaging to non-invasively monitor the growth of
the xenografts and determine the survival benefit from temozolomide treatment. Thus, we
describe a malignant meningioma model system that will be useful for investigating the
biology of meningiomas and for preclinical assessment of therapeutic agents.
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INTRODUCTION
Meningiomas are common tumors of the central nervous system
that originate from the meningeal covering (22), and therefore can
occur in any location along the entire neural axis. They are a source
of considerable morbidity and mortality because of their location
and the existence of aggressive variants (18). Nevertheless, menin-
giomas remain a poorly understood cancer. A major obstacle to
achieving an improved understanding of the molecular basis of
meningioma tumorigenesis, and to evaluating experimental thera-
pies for meningioma treatment, has been the scarcity of in vitro and
in vivo model systems. Recently, considerable progress has been
made in successfully growing meningioma cell lines in vitro (1,
20). These cell lines represent promising new tools for investigat-
ing the biology of meningiomas. However, in vivo meningioma
model systems still have problems that restrict their utility (11, 16,
27).

Attempts at propagating available meningioma cell lines as
orthotopic xenografts have been unable to recapitulate the human
tumor growth pattern, as implantation of tumor cells results in
widespread leptomeningeal dissemination throughout the subdural
and intraventricular space (16, 27). Consequently, quantification of
tumor growth as well as response to therapeutic agents is difficult
compromising the utility of the model systems (16). The purpose of
this study was to locally constrain meningioma tumor growth and

develop a clinically relevant meningioma model system in athymic
mice. Because skull base meningiomas are challenging to remove
surgically and patients with these meningiomas have a worse prog-
nosis (15, 17), we chose to develop a skull base model using the
malignant meningioma cell line, IOMM-Lee, which is tumorigenic
in vivo and grows at a rapid rate (13). By modifying these cells with
a luciferase reporter, we have been able to additionally use biolumi-
nescent imaging (BLI) to monitor in vivo growth of these cells, as
well as their response to temozolomide therapy.

MATERIALS AND METHODS

Generation of enhanced green fluorescent
protein and firefly luciferase expressing
IOMM-Lee cells

The intraosseous malignant meningioma derived cell line, IOMM-
Lee, was used in all the experiments described in this report (13,
14). IOMM-Lee cells were electroporated (Gene Pulser X Cell,
Biorad, Hercules, CA, USA) with the enhanced green fluorescent
protein (EGFP)-N3 plasmid (BD Biosciences, San Jose, CA, USA)
and single clones expressing EGFP were selected in 600 mg/mL
G418. IOMM-Lee cells were tagged with firefly luciferase (fluc)
under the control of the spleen focus forming virus promoter using
lentiviral-mediated gene transfer (9). Lentiviruses were generated
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by cotransfection of 293T cells with plasmids for gag-pol, env and
fluc. The 48 h post-transfection filtered supernatant was used to
infect IOMM-Lee cells.

Intracranial IOMM-Lee transplantations

All animal experiments were conducted following protocols
approved by the University of California, San Francisco, Institu-
tional Animal Care and Use Committee. Five- to six-week-old
female athymic mice were anesthetized with Ketamine/Xylazine
and fixed in a Model 940 stereotactic frame (David Kopf Instru-
ments, Tujunga, CA, USA). The skull base region was reached by
using the following injection coordinates: 2 mm to the right of the
bregma, 2 mm posterior to the bregma and 5.8 mm below the skull
surface. The indicated cell numbers and volumes of IOMM-Lee
suspended in phosphate buffered saline (PBS) or matrigel were
implanted using a Model 5000 Microinjection Unit (David Kopf
Instruments, Tujunga, CA, USA) loaded with a 5 mL Hamilton
7105 syringe. For injection volumes of 0.5 mL, cells were steadily
implanted over a period of 70 s and the needle was left in place for 1
minute before it was withdrawn slowly. The skull burr-hole was
sealed with bone-wax and the skin incision was closed with 7 mm
staples. Control mice were implanted with matrigel alone. The
mice were monitored closely and were euthanized if they exhibited
any neurological symptoms or had >15% weight loss or at pre-
defined times post-implantation. The estimated survival times were
the times from cell implantation to euthanasia.

Tissue processing and immunohistochemistry

EGFP fluorescence in tumor cells was analyzed in formalin fixed
mouse heads after removal of the skull with a Leica MZ Fluo III
stereomicroscope equipped with a Leica GFP-plus filter set. For
histopathologic examination, mouse heads with the skull intact
were fixed in 10% neutral buffered formalin for 48 h, decalcified in
Decal Rapid Bone Decalcifier (American Histology, Lodi, CA,
USA) for 24 h, and embedded in paraffin. Serial 10 mm thick sec-
tions were cut, numbered and processed for either hematoxylin and
eosin (H&E) staining or immunohistochemistry. Immunohis-
tochemistry was performed for vimentin using the clone Vim 3B4
antibody (1:100; Dako Corporation, Carpinteria, CA, USA), for
carbonic anhydrase 9 (CA9) using the NB 100-417 antibody
(1:1000; Novus Biologicals, Littleton, CO, USA) and for the Ki67
antigen using the clone MIB-1 antibody (1:100; Dako Corporation,
Carpinteria, CA, USA) as described earlier (28). For calculating
the MIB-labeling index, a total of 1000 nuclei in three hot-spots
were counted.

BLI of luciferase––IOMM-Lee xenografts

BLI of intracranial xenografts was performed using the IVIS
Lumina System (Xenogen Corp., Alameda, CA, USA) coupled
to the data-acquisition LivingImage software (Xenogen Corp.).
Before imaging, the mice were anesthetized with Ketamine/
Xylazine. Thirty mg/mL of luciferin (potassium salt; Gold Bio-
technology, St Louis, MO, USA) in PBS was injected intraperito-
neally at a dose of 150 mg/kg body weight. Images were acquired
between 10 and 20 minutes post-luciferin administration and peak
luminescent signal was recorded. Signal intensity was quantitated

as the sum of all detected photon counts within a region of interest
using the LivingImage software package (6).

Temozolomide treatment and statistical analysis

For assaying in vitro sensitivity to temozolomide (TMZ), 100 000
IOMM-Lee and IOMM-Lee-Luc cells were plated in six well
plates and the indicated concentration of TMZ was added at 24, 48
and 72 h. At 144 h, the cells were trypsinized, resuspended in 1 mL
media and processed using the MTT Cell Proliferation Assay
(ATCC, Manassas, VA, USA) following manufacturer’s direction.
Absorbance was read at 590 nm. The luminescence of IOMM-Lee-
Luc cells treated with TMZ as described above was also read at
144 h in six well plates using the IVIS Lumina System in the
presence of 30 mL of 30 mg/mL luciferin (potassium salt; Gold
Biotechnology, St Louis, MO, USA). All in vitro experiments were
performed in triplicate. For assaying in vivo sensitivity to TMZ,
five mice bearing IOMM-Lee xenografts were orally administered
with 120 mg/kg of TMZ for four consecutive days starting on day
10. Five mice bearing IOMM-Lee xenografts constituted the
control group and received no treatment. The Kaplan-Meier esti-
mator was used to generate the survival curves (12). Differences
between survival curves were compared using a log-rank test (19).

Methylation-specific polymerase chain reaction
(MSP)

Genomic DNA from IOMM-Lee cells was isolated using the
DNeasy kit (Qiagen, Valencia, CA, USA). The methylation status
of the O6-methylguanine-DNA methyltransferase (MGMT) gene
promoter was determined by MSP as described earlier (4, 7).
Bisulfite treatment of isolated DNA was performed using the EZ
DNA Methylation Gold kit (Zymo Research, Orange, CA, USA),
followed by polymerase chain reaction (PCR) amplification to dis-
tinguish methylated and unmethylated DNA using PCR conditions
and primers described earlier (7).

RESULTS

Fluorescent and bioluminescent tagging of
IOMM-Lee cells

In order to accurately assess the extent of leptomeningeal dissemi-
nation, IOMM-Lee cells were fluorescently labeled with EGFP and
a single high-level EGFP expressing clone, designated IOMM-
Lee-EGFP2, was selected for further analysis. For BLI, IOMM-
Lee cells were transduced with lentivirus encoding firefly
luciferase, and transduced cell pools (IOMM-Lee-Luc) were
injected in mice. IOMM-Lee-EGFP2, IOMM-Lee-Luc and paren-
tal IOMM-Lee had similar growth curves in vitro (data not shown).
Also, IOMM-Lee-EGFP2 and parental IOMM-Lee had similar
growth curves as subcutaneous tumors in athymic mice (data not
shown). Thus, there was no indication of fluorescent and biolumi-
nescent labeling altering the growth properties of IOMM-Lee
parental cells.

Estimated survival times

We injected varying amounts and concentrations of IOMM-Lee-
EGFP2 cells in PBS or matrigel into the skull base region of
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athymic mice and calculated estimated survival times based on the
appearance of neurological symptoms or weight loss. All the mice
injected with IOMM-Lee-EGFP2 cells developed tumors. Thus,
the tumor take rate with this cell line is 100%. Considerable vari-
ability in survival times and widespread leptomeningeal dissemi-
nation throughout the skull base and subarachnoid space was
observed when PBS was used as an implantation medium (data not

shown). When matrigel was used as an implantation medium, both
intra- and inter-group variability in survival times were observed,
with the extent of the former depending on both cell number and
cell volume injected (Figure 1). For example, mice injected with
500 000 cells/5.0 mL died as early as 8 days or as late as 17 days
(Figure 1), and this variability was caused by differences in tumor
cell dissemination between mice receiving this amount and con-
centration of cells (data not shown). More consistent survival times
with mice dying within 5 days of each other was observed for
injections of 3 million cells/3.0 mL and 50 000 cells/0.5 mL
(Figure 1). Of these two conditions, mice injected using the latter
condition had slightly longer estimated survival times of 17–21
days and were chosen for use in subsequent investigations (see
below).

Localized meningioma tumor growth

Macroscopic analysis of IOMM-Lee-EGFP2 xenograft growth
revealed that the tumor mass did not invade the surface of the brain,
and typically adhered to periosteal membranes when the skull and
brain were separated (Figure 2). Examination of EGFP fluores-
cence revealed that tumor growth was confined to the site of
implantation with minimal tumor cell dissemination to surround-
ing locations (Figure 2). The brain was visibly compressed at the
location of the tumor.

Histopathology of IOMM-Lee xenografts

Histopathologic analyses were performed on tumors that were
fixed, processed and sectioned in situ with the skull and brain
intact. Xenografts displayed histopathologic features that were
reminiscent of human anaplastic meningiomas, and included high
cellularity, prominent nuclear pleomorphism marked by a high

Figure 1. Estimated survival curves of athymic mice implanted with
IOMM-Lee-EGFP2 cells in the skull base region. Athymic mice
implanted with 3 000 000 cells/3 mL (A), 500 000 cells/5 mL (B), 50 000
cells/1 mL (C) or 50 000 cells/0.5 mL (D) were euthanized when they
exhibited neurological symptoms or weight loss. Kaplan Meier plots for
each implantation condition and the numbers of mice (n) in each group
are shown.

Figure 2. Macroscopic view of IOMM-Lee
skull base meningioma xenografts.
IOMM-Lee-EGFP2 cells were implanted in the
skull base region using matrigel as the
implantation medium to obtain localized tumor
growth. The tumor mass (asterisk in A) was
observed between the brain and the skull, and
adhered to the skull when the skull (A) and
brain (B) were separated. Compression of the
brain was observed (arrow in B). Minimal
leptomeningeal dissemination was observed
as assessed by the distribution of the
fluorescent EGFP label (C,D).
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nuclear to cytoplasmic ratio and prominent nucleoli. Cells were
typically arranged in syncytial-like, highly cellular sheets with
variable amounts of micro and geographic necrosis. Mitotic figures
were conspicuous and the MIB-1 labeling indices were typically
30%.

Growth characteristics of IOMM-Lee xenografts

To evaluate xenograft growth patterns, brains with intact skulls
were resected from mice injected with IOMM-Lee-Luc cells
(50 000/0.5 mL) and sacrificed at days 3, 6, 9, 12, 16 post-
implantation or when they exhibited weight loss and/or neurologi-
cal symptoms. Fixed and embedded brain and skull tissue was
serially sectioned, and examined by conventional H&E analysis or
after staining for human vimentin. Progressive tumor growth was
evident from day 3 onward, and by day 6, the tumor appeared to
erode into the adjacent skull while primarily compressing the brain
with early multifocal invasion into perivascular spaces (Figure 3).
As the tumor mass enlarged, the boundary with the brain remained
well-demarcated except for regions of microinvasion (Figures 3
and 4). By day 12 the xenografts had conspicuous necrotic zones,
and the tumors had breached the pia and were invading the brain
along perivascular and cranial nerve tracts (Figure 4). Immunohis-

tochemical staining for human vimentin gave no indication of
tumor dissemination at locations distant from the site of tumor
implantation, and therefore meningioma tumor growth was local-
ized to the site of tumor implantation.

Tumor hypoxia is an endogenous characteristic of malignant
meningiomas, is associated with higher-grade histology as well as
aggressive clinical behavior (28). With respect to this animal model
of malignant meningioma, we assessed the appearance and preva-
lence of hypoxia by CA9 immunohistochemistry (28). Regions of
hypoxia were first visible in day 9 xenografts (Figure 5), prior to the
appearance of necrosis. Extensive hypoxic cell numbers were
observed at the brain interface suggesting that this edge of the
tumor was slower at recruiting vessels from the neuropil as
opposed to non-brain interface tissue. Necrosis was first observed
in day 12 tumors (Figure 5), and similar to human meningiomas,
CA9 staining was zonal, found in viable cells surrounding regions
of necrosis and also in regions not associated with any visible
necrosis.

BLI of meningioma tumor burden

BLI was used to quantitate intracranial meningioma tumor growth
rates in advance of testing tumor response to alkylator therapy.

Figure 3. Growth Characteristics of
IOMM-Lee skull base xenografts. Tissue
sections of IOMM-Lee xenografts on day 6 (A),
day 9 (B–D) and day 12 (E,F) were stained with
human vimentin (A) or hematoxylin and eosin
(B–F) and examined to evaluate the pattern of
tumor growth. IOMM-Lee tumor growth
maintained a well-demarcated boundary with
the brain, except for microinvasion of the brain
by small clumps of tumor cells (C). s, skull;
b, brain.
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Figure 4. Pattern of brain invasion by
IOMM-Lee xenografts. Tissue sections of
IOMM-Lee xenografts on day 12 (A–C) or day
16 (D) were stained with human vimentin
(B–D) or hematoxylin and eosin (A) and
examined to evaluate the pattern of invasion of
brain. By day 12, the tumor had breached the
pia (A) and was invading the brain along
perivascular (B) and cranial nerve (C) tracts. A
similar pattern of invasion was observed in day
16 tumors (D). Arrow, pia; arrowhead, cranial
nerve.

Figure 5. Pattern of hypoxia in IOMM-Lee
skull-base xenografts. Immunohistochemistry
with a polyclonal antibody against carbonic
anhydrase 9 (CA9) was performed to evaluate
the prevalence and distribution of hypoxia in
tissue sections of IOMM-Lee xenografts on
day 9 (A), day 12 (B), day 16 (C) and day 21
(D–F) post-implantation. Similar to human
meningiomas, CA9 expression was zonal and
sometimes not associated with any visible
necrosis (E). The brain interface had
considerable hypoxia (B,C) compared with the
skull interface. b, brain; *, necrosis.
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Luminescence readings were detectable as early as day 3, and
growth curves displayed consistent patterns of exponential
increase between mice. Mice exhibited weight loss and neurologi-
cal symptoms when photon counts of 3–4 ¥ 107 were reached. In
total, the BLI results showed reproducible growth of skull base
xenografts, and provided pilot data for use in timing the administra-
tion of therapy in the subsequent experiment.

Xenograft response to TMZ therapy

To assess the efficacy of alkylator therapy, we treated IOMM-Lee
and IOMM-Lee-Luc cells in culture with TMZ (Figure 6A,B).
IOMM-Lee was sensitive to TMZ in vitro and the bioluminescent
labeling did not alter the sensitivity to TMZ. Sensitivity to TMZ has
been associated with MGMT promoter hypermethylation, and the
MGMT promoter was methylated in IOMM-Lee cells (Figure 6C).
To assess the in vivo sensitivity of IOMM-Lee xenografts to TMZ,
tumor growth in control and TMZ-treated mice were followed
using BLI. TMZ treatment resulted in a significant survival benefit
to the mice (Figure 6, P = 0.003). While control group mice died
by 17–21 days, one TMZ-treated mouse died on day 38 and the
remaining four were still alive on day 43. To plot BLI tumor growth
curves, each mouse’s luminescence measurements were normal-
ized against their own day 10 luminescence reading, allowing each
mouse to serve as its own control. TMZ treatment arrested the
rapid, exponential growth of the xenografts and resulted in reduced
normalized luminescence readings (Figure 7). Recovery of expo-
nential tumor growth was observed in the TMZ-treated mouse that
died on day 38, while the remaining four mice had stable lumines-
cent measurements till day 43 (Figure 7).

DISCUSSION
Animal models are essential preclinical tools in the study of the
molecular mechanisms of cancer and for evaluating anti-tumor
therapies. A small number of meningioma animal models exist but
every one of these systems has issues that limit their utility and/or
clinical relevance. For example, in the genetic model of meningio-
mas, which is based on the knockout of the NF2 gene specifically in
arachnoidal cells, only 20% of the mice develop tumors after 11 to
14 months (11). Other model systems have utilized non-orthotopic
locations that do not take micro-environmental influences of tumor
growth into consideration. Rodent studies on the chemotherapeutic
agent, hydroxyurea, were performed using meningioma cells
grown in the galea (25), and tests on celecoxib were performed in
subcutaneous tumors (21). Orthotopic meningioma model systems
utilizing primary and established meningioma cell lines have been
described (16, 27). However, primary meningioma cell lines
senesce after a few passages and therefore these model systems are
not reproducible (16, 27). Orthotopic models with established
meningioma cell lines have been associated with widespread lep-
tomeningeal dissemination limiting the ability to quantitate the
extent of tumor growth in these systems.

In this study, we present a well-characterized, reproducible,
clinically relevant skull base malignant meningioma xenograft
model system in which we have overcome the problem of leptom-
eningeal dissemination. We show that localized meningioma tumor
growth is sensitive to particular cell densities and is dependent on
using matrigel as the implantation agent. In addition, we show that

mice bearing localized xenografts had reproducible survival times
within a range of 5 days. IOMM-Lee has been extensively used in
meningioma research (23, 26) and has previously been implanted
into the skull base region of mice (16, 27). However, localized
tumor growth using this cell line has not previously been attained.
Prior studies utilized PBS as the implantation agent, and it is likely
that the use of matrigel would have reduced observed tumor cell
dissemination. Previous reports of survival times with mice
bearing IOMM-Lee orthotopic xenografts were similar to the sur-
vival times in this study (16, 24).

Figure 6. Efficacy of temozolomide (TMZ) in cultured IOMM-Lee cells
and methylation status of the O6-methylguanine-DNA methyltransferase
(MGMT) promoter. A. IOMM-Lee (squares and solid line) or IOMM-Lee-
Luc cells (triangles and dashed line) were treated with the indicated
concentration of TMZ and the number of viable cells was calculated
using the MTT Cell Proliferation assay. Absorbance values were normal-
ized to the no treatment control and plotted against TMZ concentration.
The number of viable cells at different TMZ concentrations was similar
for IOMM-Lee and IOMM-Lee-Luc cells. B. IOMM-Lee-Luc cells in
culture were treated with the indicated concentration of TMZ and lumi-
nescence was measured at 144 h. Luminescence readings are plotted
against TMZ concentration. C. Methylation-specific polymerase chain
reaction was performed to determine the methylation status of the
MGMT gene. The presence of a visible polymerase chain reaction
product in the lane U indicates the presence of unmethylated MGMT
gene and the presence of product in the lane M indicates the presence
of methylated MGMT gene. MGMT is methylated in IOMM-Lee. Abbre-
viations: NEG = negative controls; I-L = IOMM-Lee; POS = positive
controls.
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Preclinical cancer models should ideally resemble the human
disease and mimic human tumor-host interactions. Human menin-
giomas are generally well-demarcated lesions that remain spherical
or globular even after they attain considerable size (3). Consistent
with the growth pattern of human meningiomas, IOMM-Lee
xenografts grew as well-demarcated lesions between the skull and
brain and remained globular even when the tumor mass was large.
Malignant meningiomas commonly penetrate dura and invade
bone. IOMM-Lee xenografts adhere to the skull and exhibit con-
siderable invasion of the skull. Considerable compression of the
brain was also observed. Human meningiomas grow as separate
entities adjacent to the brain but often insinuate themselves into the
subjacent cortex as small tongues or pegs of neoplastic tissue that
follow the course of superficial blood vessels (3). IOMM-Lee
xenografts followed a similar pattern of brain invasion, with small
cell clumps invading the surrounding brain along perivascular and
cranial nerve tracts.

Tumor hypoxia is significantly associated with higher histo-
pathologic grade in meningiomas and is indicative of an aggressive
meningioma phenotype (28). Similar to human meningiomas, the
pattern of hypoxia in IOMM-Lee xenografts was found in the
classic perinecrotic pattern in larger tumors with visible necrosis.
Additionally, as in human meningiomas, hypoxia was found in
histologically viable regions of tumors not associated with any
visible necrosis. Interestingly, the amount of hypoxia at the brain
interface was considerably greater than that at the skull interface,
suggesting that the skull interface had easier access to a vascular
supply. While the contribution of tumor hypoxia to meningioma
growth is unknown, the current model system will allow such
investigations and also allow testing of therapeutic strategies that
target both normoxic and hypoxic cells.

BLI is an extremely accurate predictor of intracranial tumor
burden and it has recently been shown using intracranial glioblas-
toma xenografts that there is an excellent correlation between
intracranial tumor photon emission and tumor volume (6). BLI
tumor growth curves for the IOMM-Lee xenografts were consis-
tent between mice and BLI could accurately predict survival. Thus,
BLI is ideal for following intracranial meningioma tumor growth
and for monitoring therapeutic response. Meningioma tumor
growth in animals has previously been monitored using contrast
enhanced magnetic resonance imaging (MRI) (27). While MRI
accurately follows tumor growth, it is a less cost–effective tech-
nique and relatively few researchers have access to such a facility.
Immortalized benign meningioma cell lines have recently been
developed in several laboratories (5, 20). These cell lines grow very
slowly in mice and require long in vivo observation periods of
several months. It is anticipated that BLI will be especially useful
in following the tumor growth and monitoring the therapeutic
response of these slower growing but more common meningiomas.

TMZ, a DNA methylating agent, has schedule-dependent anti-
tumor activity against a variety of malignancies, including gliomas
and melanomas (8). Currently, it is routinely used in the clinic to
treat malignant gliomas. The efficacy of TMZ against malignant
meningiomas has not been evaluated. In the current study, we show
that TMZ was an effective therapy against rodent IOMM-Lee
xenografts and resulted in a considerable survival benefit. Methyla-
tion of the promoter of the DNA-repair gene, MGMT, has been
associated with sensitivity to TMZ in glioblastoma patients (10).
The MGMT promoter was methylated in IOMM-Lee cells. Sixteen
percent of all meningiomas have aberrant methylation of the
MGMT promoter (2) and patients bearing these tumors could pos-
sibly respond to TMZ therapy. However, more detailed preclinical

Figure 7. Bioluminescent imaging of IOMM-Lee xenografts, and their
response to temozolomide (TMZ). Ten mice received injections of
IOMM-Lee-Luc cells and were randomized into two groups that received
either no treatment or treatment with 120 mg/kg TMZ for four consecu-
tive days. A. Survival curves of athymic mice from control (dotted line)
and TMZ-treatment (solid line) groups are plotted. A significant survival
benefit (P = 0.003) for mice treated with TMZ was observed. B. Lumi-

nescence readings for each mouse were normalized against its own day
10 luminescence reading. Normalized BLI plots associated with monitor-
ing of intracranial tumor growth for control (black line) and TMZ-
treatment (gray line) groups are shown. C. Representative images from
one control group mouse at the indicated time points post-implantation
of IOMM-Lee-Luc cells are shown.
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studies using this chemotherapeutic agent are necessary before
conclusions on the effectiveness of TMZ as a therapeutic agent for
meningiomas are made.

In summary, we have developed a rodent preclinical menin-
gioma model system and show that it can be used to evaluate
therapeutic regimens. This system has several features that mimic
the human meningioma growth pattern and will enable us to dissect
the biology of meningioma tumorigenesis, evaluate tumor-host
interactions unique to meningiomas and test the toxicity and effi-
cacy of novel therapeutic approaches.
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V- CONCLUSÕES 
 

1- A ativação de componentes da cascata de sinalização de Notch em 

meningiomas caracteriza-se pelo favorecimento à formação de células com 

ploidia nuclear alterada. 

Uma vez isoladas, as células tetraplóides desmonstraram-se viáveis em cultura 

e exibem características de instabilidade genética, como: aumento da 

freqüência de figuras atípicas nucleares, pela presença de mitoses com fusos 

multipolares e de células com núcleos de tamanho aumentado. 

Em comparação às células diplóides, as células tetraplóides apresentam maior 

taxa de espontânea de apoptose e desenvolvem uma taxa mais elevada de 

alterações cromossômicas estruturais e numéricas. 

Desta forma, inferimos que a ativação da sinalização de Notch deve ser um 

mecanismo genético inicial no desenvolvimento de meningiomas, e 

potencialmente contribui para a tumorigênese. 
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2- Desenvolveu-se com sucesso um modelo ortotópico reprodutível de 

meningioma em camundongo atímico, que demonstrou ter utilidade para 

avaliação de tratamentos terapêuticos. O modelo apresenta ainda 

características histológicas e o padrão de crescimento que recapitulam o 

meningioma maligno humano e deverá ser útil para o entendimento futuro da 

biologia da doença. 

A possibilidade do uso da técnica de bioluminescência permitiu o uso de 

menor número de animais nos experimentos, bem como possibilitou a 

mensuração in vivo do crescimento do tumor após a implantação das células. 

Observou-se ainda uma correlação positiva entre a bioluminescência medida e 

o tamanho do tumor. 

Embora o emprego de temozolamida, como opção de terapêutica de 

meningiomas humanos necessite estudos mais detalhados, o tratamento dos 

animais implantados com temozolamida demonstrou um considerável 

benefício de sobrevivência aos animais.  Portanto este modelo animal tem 

potencial utilidade para avaliação da eficácia de outras terapias para 

meningiomas.  
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