IMPDH forms the cytoophidium in zebrafish

Gerson Dierley Keppeke¹,⁴#, Chia-Chun Chang¹ #, Christopher L. Antos¹, Min Peng², Li-Ying Sung²,³, Luis Eduardo Coelho Andrade⁴, Ji-Long Liu¹ *

¹ School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China

² Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan

³ Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan

⁴ Rheumatology Division, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo, SP 04023-062, Brazil

#These authors contributed equally to this work.

*Corresponding author.
Abstract

Inosine monophosphate dehydrogenase (IMPDH) catalyzes the rate-limiting step in de novo guanine nucleotide biosynthesis. Its activity is negatively regulated by the binding of GTP. IMPDH can form a membraneless subcellular structure termed the cytoophidium in response to certain changes in the metabolic status of the cell. The polymeric form of IMPDH, which is the subunit of the cytoophidium, has been shown to be more resistant to the inhibition by GTP at physiological concentrations, implying a functional correlation between cytoophidium formation and the upregulation of GTP biosynthesis. Herein we demonstrate that zebrafish IMPDH1b and IMPDH2 isoforms can assemble abundant cytoophidium in most of cultured cells under stimuli, while zfIMPDH1a shows distinctive properties of forming the cytoophidium in different cell types. Point mutations that disrupt cytoophidium structure in mammalian models also prevent the aggregation of zebrafish IMPDHs. In addition, we discover the presence of the IMPDH cytoophidium in various tissues of larval and adult fish under normal growth conditions. Our results reveal that polymerization and cytoophidium assembly of IMPDH could be a regulatory machinery conserved among vertebrates, and with specific physiological purposes.

Keywords: IMPDH, cytoophidium, larval zebrafish, adult zebrafish.
Introduction

Macromolecules that assemble into membraneless organelles are a common feature of different forms of life. These subcellular structures, such as ribosomes, cytoplasmic processing bodies (P bodies), uridine-rich small nuclear ribonucleoprotein bodies (U bodies), glycine/tryptophan bodies (GW bodies), proteasomes and purinosomes, have been getting increasing attention recently (Liu, 2016).

Over the last 10 years, many groups have intensively worked on a kind of membraneless structure termed the cytoophidium (“cellular snake” in Greek, cytoophidia in plural) in a variety of model organisms. In mammalian cells, the cytoophidium appears filamentous with length ranging from hundreds of nanometers up to longer than 10 μm, or in donut-like circular forms with a wide size range. Accordingly, these structures have been named “rods and rings” (RR) by some groups. The cytoophidium was first reported to be comprised of cytidine triphosphate synthase (CTPS), and then inosine 5´-monophosphate dehydrogenase (IMPDH) was also identified to have the cytoophidium-forming property in mammalian models (Carcamo et al., 2011; Liu, 2010). IMPDH and CTPS cytoophidia are substantially distinct structures yet frequently aligned side-by-side with each other in the cell (Chang et al., 2018). To date, dozens of metabolic enzymes have been demonstrated to assemble into filamentous or dot-like aggregates through a genome-wide screening in budding yeast, suggesting that forming large complexes could be a common regulatory mechanism of metabolic enzymes (Lynch et al., 2020; Noree et al., 2019; Shen et al., 2016).
IMPDH contains two domains, a catalytic domain and a Bateman domain. While the catalytic domain processes the rate-limiting step of de novo guanine nucleotide synthesis, in which IMP is converted into XMP in a NAD\(^+\)-dependent manner, the Bateman domain serves for allosteric modulation of its activity. Binding of GDP/GTP at the Bateman domain reduces affinity to its substrate IMP, while binding of ATP promotes enzyme activity (Buey et al., 2015; Hedstrom, 2009). Human IMPDH forms octamers spontaneously in vitro. In the presence of ATP, IMDPH octamers can pile up to form a polymeric structure, which would be further stabilized by IMP and destabilized by the binding of GTP (Johnson and Kollman, 2020; Juda et al., 2014; Lin et al., 2018). The cytoophidium is formed by a large bundle of IMPDH polymers aligning side-by-side. It has been shown that IMPDH is much less sensitive to its negative regulator GTP in the polymeric state. Since IMPDH plays a pivotal role in regulating the production of guanine nucleotides in the cell, massive polymerization of IMPDH may facilitate the accumulation of GDP/GTP in cells, which could be particularly important to those cells with a higher demand for nucleotides such as highly proliferative cells (Fernandez-Justel et al., 2019; Johnson and Kollman, 2020).

The IMPDH cytoophidium was first observed in cells under treatment with an IMPDH inhibitor, mycophenolic acid (MPA) (Ji et al., 2006). Thereafter, many other conditions have been shown to promote IMPDH cytoophidium assembly, such as glutamine deficiency, disturbance of one-carbon pathway and treatment by a variety of clinical drugs, implying that cytoophidium formation is correlated with changes in the metabolic state of the cell (Calise et al., 2014; Calise et al., 2016; Keppkeke et al., 2016). Yet, the IMPDH cytoophidium is also observed in certain cells and tissues without additional stimulus, such as mouse
pluripotent stem cells, antigen-activated T lymphocytes, retinal photoreceptor cells, and some tumors, such as acral melanomas and clear cell renal cell carcinoma (Calise et al., 2018; Duong-Ly et al., 2018; Kepeke et al., 2020; Kepeke et al., 2018; Plana-Bonamaiso et al., 2020; Ruan et al., 2020).

Because of its essential role in de novo guanine nucleotide production, IMPDH has been considered as a promising candidate for immunosuppressant, antiviral and anticancer drugs for decades (Hedstrom, 2009; Naffouje et al., 2019). However, little is known about the physiological importance of IMPDH cytoophidium. Herein, we provide evidences to demonstrate that zebrafish IMPDH1b and IMPDH2 can form abundant cytoophidia in cells under certain conditions, while zfIMPDH1a shows distinctive tendency to form the cytoophidium in different cell types. We also apply mutagenesis to disrupt zfIMPDH polymerization, suggesting a structural similarity between polymers of zfIMPDH and hIMPDH. Immunofluorescence indicates that zfIMPDH cytoophidia appear naturally in multiple tissues of zebrafish at different developmental stages. Our findings reinforce the theory that the IMPDH cytoophidium is a common feature of vertebrate IMPDH, and indicate that zebrafish is a suitable model for further research on the physiological functions of this structure.
Results

zflIMPDH isoforms exhibit different propensity to form cytoophidia

While the CTPS polymer structure has been revealed in various organisms across prokaryotes and eukaryotes, research on the IMPDH polymer and cytoophidium is still limited to mammalian models. We aligned IMPDH2 sequences of some representative vertebrates, and the result shows 78% sequence identity among them (Supplementary Figure 1). Sequences of human and mouse (mammals), chicken (bird), Eastern coral snake (reptile), African clawed frog (amphibian) and zebrafish (bony fish) IMPDH2 all have 514 amino acids, while the ghost shark (cartilaginous fish) IMPDH2 has 538 amino acids with an additional exon. The sequence similarity reaches 81.7% without the extra exon, indicating the high degree of conservation of IMPDH sequences among vertebrates. Therefore, we wondered whether the polymerization and cytoophidium-forming properties of IMPDH are conserved in non-mammal vertebrates.

Zebrafish has three IMPDH isoforms, 1a, 1b and 2, encoded by distinct genes. We compared the sequences of all three isoforms with the human IMPDH1 and IMPDH2, and observed that both zflIMPDH1a and 1b are similar to hIMPDH1 with 85.5% and 90.7% sequence identity, respectively, while zflIMPDH2 is similar to hIMPDH2 with 91.4% sequence identity (Figure 1A and B).

In mammals, IMPDH1 is expressed at low levels in most tissues except for the retina, where it is highly expressed, while IMPDH2 is the predominant isoform in most tissues and is upregulated in proliferative
cells (Carr et al., 1993; Hager et al., 1995; Senda and Natsumeda, 1994). We analyzed mRNA expression levels of zfIMPDH isoforms in various tissues. Interestingly, zfIMPDH1a was almost exclusively expressed in the eye, at about 20-fold higher than the levels in other tissues (Figure 1C). zfIMPDH1b showed the highest expression levels in the larval stage, with about twice the level of adult eyes, intestine and a mix of organs, and 7-fold the level of muscle (Figure 1D). On the other hand, zfIMPDH2 mRNA shows generally higher levels in adult tissues than larvae, although the difference is only statistically significant between larvae and adult muscle (Figure 1E). These data are consistent with a previous study by (Li et al., 2015) which reports about 1.5 times increased expression level of zfIMPDH1a in the eye, despite our results suggest a much higher relative expression level. The expression patterns of the zfIMPDH1b and zfIMPDH2 are also generally consistent between two studies.

In order to determine the cytoophidium-forming properties of each zfIMPDH isoform, we cloned the isoforms into constructs and expressed them in HeLa cells. In the condition without additional stimulus, zfIMPDH1b assembles into the cytoophidium spontaneously in 40% of cells, while zfIMPDH1a and zfIMPDH2 appear in a diffused pattern. Intriguingly, upon treatment with the IMPDH inhibitor MPA, which induced abundant cytoophidia in ≥85% of cells expressing zfIMPDH1b and zfIMPDH2, only few cytoophidia were observed in about 5% of zfIMPDH1a-transfected HeLa cells (Figure 2A-C). The sequences of zfIMPDH1a and zfIMPDH1b are 88.4% identical, although an extra exon is only present at the C-terminus of zfIMPDH1a (Figure 1A). We sought to elucidate if this additional 30 a.a. long peptide could affect the filament-forming property of zfIMPDH1a. Thus, we removed the C-
terminus of zfIMPDH1a by introducing a stop codon at the position of residue 510. However, zfIMPDH1aΔ510-544 did not form the cytoophidium in HeLa cells even upon MPA treatment (Supplementary Figure 3D), indicating that the difference between zfIMPDH1a and 1b at the C-terminus does not explain their distinct filament-forming properties.

We further investigated the cytoophidium-forming properties of individual zfIMPDH isoforms in different cell lines and conditions. In HEp-2 cells treated with 6-diazo-5-oxo-L-norleucine (DON), a glutamine analog that can induce IMPDH cytoophidium assembly (Carcamo et al., 2011), zfIMPDH1a is present in cytoophidia in ~40% of cells and aggregates in sphere or in an irregular shape (clumps) in ~30% of cells (Figure 2D). Although given clumps do not appear in a filamentous structure, we could not exclude the possibility that they are also formed by IMPDH polymers. Different from the HeLa cells, zfIMPDH1b assembled spontaneous cytoophidium in only 7% of HEp-2 cells. Upon MPA or DON treatment, zfIMPDH1b and zfIMPDH2 isoforms assembled into cytoophidia in ≥85% and ≥63% of cells, respectively (Figure 2E and Supplementary Figure 2). Altogether, this data shows that zfIMPDH isoforms display distinctive cytoophidium-forming tendencies, as does their human homologs (Keppeke et al., 2018), with zfIMPDH1a forming fewer cytoophidia in all conditions.

Point mutations impede zfIMPDH cytoophidium assembly

Previous structural studies have shown that a single point mutation could result in remarkable changes in cytoophidium formation. For instance, the Y12A mutation on hIMPDH2 disrupts polymerization, while the R224P mutation results in irreversible aggregation of hIMPDH1 and
no-cytoophidium pattern of hIMPDH2 (Anthony et al., 2017; Fernandez-Justel et al., 2019; Keppeke et al., 2018). These two critical positions are conserved in most vertebrate IMPDHs, including all zfIMPDH isoforms (Figure 3A and Supplementary Figure 1). To test if Y12A and R224P mutations could have similar effects on zfIMPDH1b and 2, we introduced the point mutations into both isoforms, and treated HEp-2 and HeLa cells with MPA or DON after transfection. As the result, Y12A completely prevented assembly of the cytoophidium of both isoforms in both HEp-2 and HeLa cells with no significant changes in the expression levels (Figure 3B, C, E and G, and Supplementary Figure 3A and B, respectively). Meanwhile, zfIMPDH1b-R224P could not assemble the cytoophidium in HEp-2 and HeLa cells, but spontaneously formed irregular clumps in ~40% of cells (arrowheads in Figure 3D). This proportion of cells with clumps was not changed when cells were further treated with MPA or DON (Figure 3G and Supplementary Figure 3C). On the other hand, zfIMPDH2-R224P spontaneously assembled the cytoophidium in ~50% of HEp-2 cells, and a similar proportion was observed with DON treatment (Figure 3G). However, under MPA treatment all the cytoophidium turned into clumps in ~40% of the cells (Figure 3F and G).

Y12A point mutation abrogate cytoophidium in zfIMPDH1b and 2. However, in ~50% of transfected HEp-2 cells under MPA or DON treatment (asterisks in Figure 3C and E), cytoophidia formed by endogenous h-IMPDH, which were not labeled by anti-HA and anti-Flag antibodies, were observed, suggesting the zfIMPDHs do not have significant interaction with human IMPDH at the molecular level, although we should note that octomers containing both human and zfIMPDHs with the Y12A point mutation wouldn’t form polymers. We have previously
demonstrated that human IMPDH1 IMPDH2 always locate within the same cytoophidium structures (Keppeke et al., 2018). Thus, to test if different zfIMPDH isoforms interact at a molecular level, we co-transfected cells with constructs encoding zfIMPDH1b and zfIMPDH2 with or without Y12A point-mutation, and treated the cells with MPA before fixation. To our expectation, wild-type zfIMPDH1a and wild-typezfIMPDH2 colocalized in all cytoophidia under MPA treatment. Yet, when there was either zfIMPDH1b-Y12A or zf-IMPDH2-Y12A present, cytoophidium assembly was completely inhibited (Supplementary Figure 4), suggesting that all zfIMPDH isoforms interact within the cytoophidium structure. Altogether, our findings suggest that the zfIMPDH polymer and cytoophidiunm structures are similar to human IMPDHs on a structural basis.

zfIMPDH forms the cytoophidium in larvae

It has been demonstrated that the hIMPDH polymer structure enhances the resistance to allosteric inhibition from GTP binding, thereby promoting GTP production under physiological conditions (Johnson and Kollman, 2020). In previous our previous studies, we found the IMPDH cytoophidium in the spleen and pancreas of normal mouse (Chang et al., 2015; Keppeke et al., 2019). To examine whether zfIMPDH forms the cytoophidium in vivo, we performed whole-mount immunostaining on 8 days post fertilization (dpf) larvae (n=10) with an anti-hIMPDH2 antibody; this antibody has been validated to target all three zfIMPDH isoforms (Figure 2 and 3). In the eye and fin of larvae, we observed a few IMPDH cytoophidia with a filamentous appearance in some specimens (Figure 4A, B, K and L). Furthermore, in specific
regions where bones are developing, many cytoophidia could be observed in all specimens (Figure 4C-J). Notably, at this larval stage, cartilage is the major component of the skeleton. Cytoophidia were abundant in the Meckel’s cartilage, operculum and pharyngeal teeth developing niches (Figure 4C-J), suggesting that IMPDH cytoophidium formation is correlated with cartilage development and the presence of dental stem cells. We also labeled IMPDH in embryos ranging from 2 to 12 hpf (hours post fertilization), in which we found no detectable cytoophidia (data not shown). The IMPDH inhibitor MPA can effectively induce IMPDH cytoophidium formation in vitro and in vivo in mammalian models (Keppeke et al., 2016). To further analyze how zfIMPDHs respond to MPA treatment in zebrafish, we treated 8 dpf larvae with MPA for 1 day. As the result, a remarkable increase in the number and length of IMPDH cytoophidia were observed in cells of the olfactory organ in all the treated larvae (Figure 5).

zfIMPDH forms the cytoophidium in adult fish

For further analysis of cytoophidium assembly in vivo, cryosections of adult fish (n=4) were probed with the anti-IMPDH antibody. Tissues were identified based on published references (Menke et al., 2011). In the eye sections, abundant cytoophidia were observed in the outer nuclear layer and outer plexiform layer of the retina, where the photoreceptor cells are located (highlighted by yellow dashed lines in Figure 6A-C). However, no cytoophidia were observed in the cornea (Figure 6D). On the other hand, a group of cells in the interior of early differentiation teeth in the cap and bell stages display many cytoophidia (arrows in Figure 6E-I). According to their localization, these cells could
be the dental stem cells. Meanwhile, the cytoophidium was not present in teeth in the late eruption phase (Figure 6J).

We also observed many cytoophidia in the pseudobranch and primary lamella of the gills in adult fish. In the pseudobranch, cytoophidia were distributed throughout the organ (arrows in Figure 7A-D). In the gills, they were located in the structure providing cartilaginous support, in the primary lamella region, in which chondrocytes locate and produce the cartilaginous matrix that gives the support (Figure 7E-H). Interestingly, in most of the chondrocytes, cytoophidia were located in the nucleus (arrow in Figure 7I).

Cytoophidia were also observed in the vitellogenic and pre-ovulatory follicles of the ovary (arrows in Figure 8A-E). The cytoophidium was usually located in the thick zona radiata of the oocyte which is surrounded by a layer of follicle cells (highlighted by yellow dashed lines in Figure 8B). The zona radiata is present in stage 4 vitellogenic primary oocytes and pre-ovulatory follicles (Presslauer et al., 2014). We also screened the liver, intestine, cerebellum, olfactory organ, muscle and skin, but no cytoophidia were observed (Figure 8F and Supplementary Figure 5).

Quantification data shows that cytoophidium was observed in ~80% of photoreceptor cells, and ~20-30% of cells in the teeth, pseudobranch, the gill’s primary lamella and follicular cells of the ovary (Figure 8F). Taken together, our findings demonstrate that zfIMPDH forms the cytoophidium in multiple tissues and at different developmental stages. Considering the advantages of using zebrafish as the research model, further studies on zebrafish cytoophidium would facilitate
investigation into the physiological importance of IMPDH cytoophidia in vertebrates.

Discussion

In the last decade, intensive studies have been done to investigate the novel subcellular compartmentalization of metabolic enzymes - the cytoophidium. The IMPDH cytoophidium is proposed to enhance GTP production under physiological conditions, especially in proliferative cells (Johnson and Kollman, 2020; Keppeke et al., 2018). In mammalian models, formation of the IMPDH cytoophidium has been shown to correlate with rapid cell proliferation of pluripotent stem cells and antigen-activated lymphocytes (Calise et al., 2018; Duong-Ly et al., 2018; Keppeke et al., 2018). In other tissues, the presence of the IMPDH cytoophidium might be associated with the insulin-secretory signals in mouse beta cells and the light response of photoreceptor cells in mouse retina, suggesting the association between this structure and multiple physiological events (Chang et al., 2015; Plana-Bonamaiso et al., 2020).

In this study, we demonstrate that the cytoophidium-forming properties of zebrafish IMPDH isoforms, showing that the IMPDH cytoophidium is likely conserved among vertebrate species and may have originated much earlier during the evolution. The cytoophidium-forming tendency of zfIMPDH1a is particularly intriguing. When it is expressed in HeLa cells, zfIMPDH1a rarely forms cytoophidia under induction. However, in HEp-2 cells zfIMPDH1a cytoophidia or clumps could be observed in many cells under the treatments of DON or MPA,
suggesting the regulation of zfIMPDH1a in forming the cytoophidium could be variable in different cell types. Indeed, zfIMPDH1a is mainly expressed in the eye, where many cytoophidia could be observed. IMPDH cytoophidia in the fish retina are distributed largely in the outer layer region, where photoreceptor cells are located. These data corroborate a recently study showing that IMPDH aggregate formation in mouse photoreceptor cells correlates with bright light exposure and increased production of GTP and ATP (Plana-Bonamaiso et al., 2020). We therefore hypothesize that the function of the IMPDH cytoophidium in retinal cells, which is likely associated with the intense guanosine nucleotide production required to support the phototransduction process, is conserved among vertebrates.

We also show that cytoophidia are present in a specific cell population in the interior of early differentiation teeth. Further analysis is required to determine whether the IMPDH cytoophidium could be a marker for dental stem cells and its function in correlation with dental development. Moreover, IMPDH cytoophidia are displayed by chondrocytes at various regions in larval and adult fish, such as Meckel’s cartilage, operculum, pharyngeal teeth and the pseudobranch. Notably, in most of the gill’s primary lamella chondrocytes, cytoophidia were found in the nucleus. Although nuclear cytoophidia are frequently seen in cultured cells, the functional differences between nuclear and cytoplasmic cytoophidia are largely unknown (Gou et al., 2014; Juda et al., 2014). Our results indicate that the nuclear cytoophidium is also a natural phenomenon in vivo. Further study is needed to understand whether and how IMPDH cytoophidia participate in the specific metabolism of chondrocytes.
Zebrafish have been used in biological study since the 1930’s. One of many reasons for this species’ popularity in genetic research is the convenience of generating transgenic individuals. Since a great number of molecular tools for genome editing have been established in the last few years, the generation of mutant vertebrate models for cytoophidium research could be accelerated. We have shown that the point mutation Y12A, which disrupt IMPDH polymerization or cytoophidium assembly in mammalian IMPDHs also prevent zfIMPDH cytoophidium formation. Future work to apply given mutations to the zebrafish experimental model would greatly benefit the investigation into the physiological importance of the IMPDH cytoophidium.

Methods

Animals

Zebrafish (Danio rerio) AB strain was used throughout this study. Embryos and fish were kept at 28.5 °C for all subsequent assays. In total, 4 adult fish were used for RNA collection and 4 adult fish were used for cryosections. Maintenance and sacrifice of the animals were performed following ethics recommendations. Animals were euthanized by rapid chilling (2° to 4°C) for at least 10 minutes, as recommended by the AVMA Guidelines for the Euthanasia of Animals (Leary et al., 2020).

Constructs
Zebrafish IMPDH coding sequences for the isoforms 1a, 1b and 2 (NCBI Reference Sequence: NM_001002177.1; NM_001014369.2; NM_201464.1) were amplified with primers shown in Supplementary Table 1 from zebrafish cDNA (see RT-qPCR methods for details) and inserted into the linearized pCMV3 vector (Sino Biological) with tags at the N-terminus (Myc for zfIMPDH1a, HA for zfIMPDH1b and Flag for zfIMPDH2) by using ClonExpress Ultra One Step Cloning Kit (C115, Vazyme) according to the manufacturer’s protocol. Site-directed mutagenesis was carried out by linearizing target constructs with primers containing individual point mutations (Supplementary Table 1), followed by recirculation of the plasmid with ClonExpress One Step Cloning Kit (C113, Vazyme).

Cell culture and transfection

HeLa cells (93021013, Public Health England) and HEp-2 cells (CCL-23, ATCC) were cultured in DMEM with high glucose (Thermo Fisher Scientific) and supplemented with 10% FBS (Thermo Fisher Scientific), 2 mM L-Glutamine and 1% Gibco Antibiotic-Antimycotic (Thermo Fisher Scientific). All cells were cultured in a 37°C humid incubator with 5% CO₂. For cell transfection, TurboFect or Lipofectamine 3000 transfection reagent (R0531 or L3000001, Thermo Fisher Scientific) was used according to instructions provided by the manufacturer. MPA (Mycophenolic acid, J61905, Alfa Aesar) was dissolved in DMSO (Sigma-Aldrich) and added to the culture medium at 100 µM final concentration. DON (6-diazo-5-oxo-L-norleucine, D2141, Sigma-Aldrich) was solubilized in water to a 100 mM stock solution and added to the culture medium at a final concentration of 100 µM.
Immunofluorescence in cultured cells, whole-mounted larvae and adult cryosections

Immunofluorescence probing on cultured cells was performed as previously described (Keppeke et al., 2015). Whole-mounted larvae immunofluorescence, including fixation, de/rehydration, permeabilization and antibody probing, was performed following the published protocol (Santos et al., 2018). For the adult zebrafish, specimens were sacrificed and the entire animal was immediately embedded with Tissue-Tek O.C.T. compound (Sakura) and stored at −80 °C. Cryosections were cut to 5 µm thick in a lateral view. Sections were then fixed with 4% paraformaldehyde for 20 min, followed by blocking with Background Sniper (BS966, Biocare) for 15 min. After washing with PBS, sections were then incubated overnight at 4 °C with primary antibody at 1:300 dilution with staining buffer (PBS supplemented with 0.5% Tween and 1% BSA). After washing three times with PBS, sections were incubated for 2 hours at room temperature with secondary antibody 1:500 dilution in staining buffer with DAPI. After washing three times with PBS, sections were mounted and observed under a fluorescent microscope. Organs and tissues on cryosections were identified by comparing nuclear staining and tissue morphology with published references (Menke et al., 2011).

Antibodies used in this study: rabbit polyclonal anti-IMPDH2 antibody (12948-1-AP, ProteinTech), mouse anti-Myc monoclonal antibody 9E10 (sc-40, Santa Cruz Biotech), mouse anti-HA antibody (sc-7392, Santa Cruz Biotech), mouse anti-HA monoclonal antibody HA-7 (H3663, Sigma-Aldrich), mouse anti-Flag M2 antibody (F1804, Sigma-
Aldrich), mouse anti-tubulin antibody (MAB1637, Sigma-Aldrich), rabbit polyclonal anti-DYKDDDDK-tag Flag antibody (MBS821829, MyBioSource). DyLight 488-conjugated, CyTM3-conjugated and DyLight 649-conjugated donkey polyclonal anti-mouse IgG antibody (715-165-151, 715-485-151, 715-495-151, Jackson ImmunoResearch), CyTM3-conjugated donkey polyclonal anti-rabbit IgG antibody (711-165-152, Jackson ImmunoResearch), Alexa Fluor® 488-conjugated, Alexa Fluor® 647-conjugated donkey polyclonal anti-rabbit IgG antibody (A-21206, A-31573, Invitrogen Mol Probes).

Immunoblotting

Cells were lysed in RIPA lysis buffer (20-188, Millipore) and 10µg total protein was run for each lane on a 12% polyacrylamide gel. The PVDF membrane with 0.45 µm pole size (GE Healthcare) was used for protein transfer. The membrane was incubated with 5% milk in PBS at room temperature for 1 hour for blocking, followed by overnight incubation with primary antibodies at 4°C. Primary antibody was washed away from the membrane with PBST for three times. Further incubation with secondary antibodies was perform at 4°C for overnight. After three times washing with PBST, the signals were detected using ECL (WBLUF0500, Millipore) and the GeneGnome XRQ chemiluminescence imaging system (Syngene). Antibodies used for immunoblotting include: mouse anti-HA IgG (1:3000, sc-7392, Santa Cruz), mouse anti-Flag IgG (1:3000, F3165, Sigma-Aldrich), mouse anti-myc (1:1000, sc-40, Santa Cruz).

RT-qPCR
Adult zebrafish were sacrificed and eye, muscle, intestine, and a mix of organs were collected immediately. The mix of organs contained parts of liver, kidney, pancreas, heart, gills, spleen and perhaps other organs. For the 10 dpf larvae, the entire animal was used. Samples were ground up with a tissue homogenizer and RNA was extracted using TransZol Up Plus RNA Kit (ER501, TransGen Biotech). Reverse transcription was performed with PrimeScrip RT Master Mix (RR036A, Takara). Quantitative PCR (qPCR) was performed with ChamQ Universal SYBR qPCR Master Mix (Q711-02, Vazyme), and the signal was detected by the QuantStudio 7 Flex System (Applied Biosystems), following manufacturer’s protocol. Standard 60° Tm annealing temperature and 40 amplification cycles were used for all primer pairs. The quality of reaction was evaluated by melt curves. Target Ct genes were analyzed by comparison of housekeeping references through the ΔΔCt method (Livak and Schmittgen, 2001). First delta was housekeeping geomean. Second delta was larval levels. Housekeeping was a geomean of β-Act, GAPDH, HPRT1 and TUBα-1a. Primers targeting specific zfIMPDH isoforms for RT-qPCR were referred from a previous study (Li et al., 2015). All primer sequences are presented in Supplementary Table 1.

Microscope and image analysis

Fluorescent images were acquired with a laser-scanning confocal microscope (TCS SP8 STED 3X, Leica) and the fluorescent microscope Axio Imager Z2 or M2 (Zeiss) under 20X and 40X objectives. Images were analyzed with ImageJ software.
Statistics

Quantifications were performed on captured images from at least two in vitro experimental replicates, or the adult specimens enrolled in the study. Averages and standard deviation (S.D.) or standard error of the mean (S.E.M.) is shown. The number of cells counted is indicated in each experiment. Average Ct values in the RT-qPCR analysis and the average of cells presenting cytoophidium or clumps were statistically compared by the t test with Welch’s correction. P-value $<$0.05 was considered statistically significant. Statistical analysis was performed with GraphPad Prism software.
Funding

This work was supported by ShanghaiTech University and FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) grant number #2017/20745-1. Funding providers had no involvement in the study design, collection, analysis and interpretation of data, writing of the report, and in the decision to submit the article for publication.

Conflict of Interest

The authors declare no conflicts of interest.
References

Figure legends

Figure 1. Differential expression patterns of three zfIMPDH isoforms. (A) Protein sequence comparison between human and zebrafish IMPDH isoforms. (B) Phylogram guide for human and zebrafish IMPDH sequences. (C-E) Relative mRNA levels of zfIMPDH isoforms in different tissues. n=4 adult specimens and n=2 larval specimens (10 dpf). Larval Ct average was considered as 1. Error bars = S.E.M. * p<0.05 by t test.

Figure 2. Diverse zfIMPDHs cytoophidium-forming properties in vitro. (A-C) zfIMPDH isoforms were cloned with N-terminal tags and expressed in HeLa cells. Immunofluorescence probing on transfected HeLa cells under conditions with or without treatment of MPA (100 µM for 2 hours). Myc-tag, HA-tag and Flag-tag are shown in red and antibody against IMPDH is shown in green. Cytoophidia formed by zfIMPDH are indicated by arrows in B and C. The proportion of cells with cytoophidia and the number of cells were counted (n) is shown below each panel. (D) HEp-2 cells expressing zfIMPDH1a were treated with DON (100 µM for 2 hours) before fixation. Cytoophidia and clumps that contain zfIMPDH1a are indicated by arrows and arrowheads, respectively. Scale bars = 10 μm. (E) Bar graph showing the quantification of the proportion of zfIMPDH expressing HEp-2 cells with cytoophidia or clumps. Only transfected cells were counted and the number of cells counted (n) is shown for each group. Error bars = S.E.M. * p<0.05; ** p<0.01; *** p<0.001, proportions were compared by t test with the respective isoform without treatment. OBS.: With MPA
treatment, non-transfected cells will present endogenous cytoophidia labeled by the α-IMPDH antibody.

Figure 3. Disruption of zfIMPDHs cytoophidium-forming properties with point mutations. (A) Sequence comparison of human and zebrafish IMPDH isoforms at regions around Lys12 and Arg224. (B) Immunoblotting of HeLa cells expressing WT or Y12A mutant zfIMPDH isoforms under conditions with or without MPA treatments shows similar expression levels of WT and Y12A mutant zfIMPDHs. (C-F) Immunofluorescence of HEp-2 cells expressing Y12A or R224P mutant zfIMPDH1b and zfIMPDH2. Cells were treated with MPA or DON for 2 hours before fixation. Asterisks in panels C and E indicates the cells with endogenous cytophidia, but not the zf-IMPDH cytophidium. Arrows and arrowheads in panels D and F indicate zfIMPDH cytoophidia and clumps, respectively. Scale bars = 10 μm. (G) Quantification of the proportion of HEp-2 cells with zfIMPDH cytoophidia or clumps under the conditions shown in (C-F). Only transfected cells were counted and the number of cells counted (n) is shown for each group. Error bars = S.E.M. OBS.: With the drug treatment, non-transfected cells will present endogenous cytoophidia labeled by the α-IMPDH antibody.

Figure 4. IMPDH cytoophidia in 8 dpf zebrafish larvae. Whole-mount immunofluorescence of 8dpf larvae with anti-IMPDH2 antibody (shown in green) and DAPI (magenta). (A) Cytoophidia in the eye. (B) Zoom-in view of selected region in (A). (C) Ventral view of the head of larva. (D) Many cytoophidia were observed in the Meckel’s cartilage (highlighted by yellow dashed lines in (C) and (D). (E) Zoom-in view of selected region in
(D). (F) Cytoophidia were observed in the operculum. (G) Magnified image of selected region in (F). (H) Ventral view of ceratobranchials. (I and J) Zoom-in view of selected area in (H). The auto-fluorescence (red) shown in (J) reveals the contour of pharyngeal teeth, with abundant cytoophidia. (K and L) Some cells in the fin display cytoophidia. Arrows in all panels indicate cytoophidia. Scale bars = 50 μm in (A), (C), (H) and (K); 20 μm in (D), (F), (I) and (J); 10 μm in (B), (E), (G) and (L).

Figure 5. MPA promotes IMPDH cytoophidium assembly in olfactory organ of larvae. Immunofluorescence images of the olfactory organ of 8 dpf larvae treated with 0.1% DMSO (A) or 100μM MPA (B) for 1 day. (A’ and B’) Magnified images of selected areas in (A) and (B). IMPDH is shown in green and tubulin is shown in red. Scale bars = 20 μm in (A) and (B); 10 μm in (A’) and (B’).

Figure 6. IMPDH forms cytoophidia in the retina and teeth of adult fish. Immunofluorescence images of retina and teeth of adult zebrafish cryosections for IMPDH (green) and DAPI (magenta). (A-D) Abundant cytoophidia were observed in the outer nuclear layer and outer plexiform layer of the retina (arrows in C), and some were found in the rods and cones layer (A-C), but no cytoophidia were detected in the cornea (D). Highlighted by yellow dashed lines in (A’’ and B’’)) is the region where photoreceptor cells are located. (B) Magnified image of selected region in (A). (C) Magnified image of selected region in (B). GC = ganglion cells, IPL = inner plexiform layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer, R&C = rods and cones, PCL = pigment cell layer. (E-J) Cytoophidia were present in cells in the interior.
of teeth at early differentiation cap and bell stages (highlighted by yellow dashed lines in E and H), but not in the late eruption phase (J). (F and G) Magnified image of selected region in (E). (I) Magnified image of selected region in (H). Arrows in F, G and I indicate cytoophidia. Scale bars = 50 μm in (E); 20 μm in (A) and (H); 10 μm in (B), (D), (F), (G), (I) and (J).

Figure 7. IMPDH forms cytoophidia in pseudobranch and the primary lamella of the gill in adult fish. Immunofluorescence images of pseudobranch and gill of adult zebrafish cryosections for IMPDH (green) and DAPI (magenta). (A-D) Abundant cytoophidia were observed throughout the pseudobranch of the fish, highlighted in (A) by dashed lines. (B) Magnified image of selected region in (A). Arrows indicate cytoophidia in (B, C and D). (E-I) Cytoophidia were found in the primary lamella chondrocytes of the gill’s cartilaginous support. In many cells cytoophidia were located in the nucleus (I). (F and G) Magnified images of selected regions in (E). Arrows indicate cytoophidia in (F-I). Scale bars = 50 μm in (A); 20 μm in (E); 10 μm in (B-D) and (F-I).

Figure 8. IMPDH forms cytoophidia in the ovary of adult fish. Immunofluorescence images of the ovarian tissue of adult zebrafish cryosections for IMPDH (green) and DAPI (magenta). (A-E) Cytoophidia were observed in the vitellogenic and pre-ovulatory follicles. Cytoophidia were frequently located in the thick zona radiata of oocytes (B). Arrows indicate the cytoophidia in (B-E). Scale bars = 100 μm in (A); 10 μm in (B-E). (F) Quantification of cells presenting cytoophidia in the different
tissues of adult fish. (n) indicate the number of cells counted. Error bars = S.D.