Inflammatory environment and immune responses to oxidized LDL are linked to systolic and diastolic blood pressure levels in hypertensive subjects

Henrique Andrade Rodrigues da Fonseca a,1, Francisco Antonio Helfenstein Fonseca a,c, Andrea Moreira Monteiro b,c, Nelson Carvalho Farias Jr. c, Henrique Tria Bianco a, Sergio Augusto Bueno Brandão a, Rui Manoel dos Santos Póvoa a, Magnus Gidlund b,1, Maria Cristina de Oliveira Izar a,c,⁎

1 Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
2 Department of Immunology, University of Sao Paulo, Sao Paulo, SP, Brazil
3 National Institute of Complex Fluids, Sao Paulo, SP, Brazil

ARTICLE INFO

Article history:
Received 12 January 2012
Accepted 3 March 2012
Available online 28 March 2012

Keywords:
Hypertension
Autoantibodies
OxLDL
Imune system
Blood pressure

Hypertension is a complex disorder commonly associated with atherosclerosis and cardiovascular events. In recent years, the link between hypertension and inflammation became clear as suggested by several experimental [1,2] and observational [3,4] studies.

Adaptive immunity seems deeply involved in the modulation of atherosclerosis development depending on the type of T-lymphocytes and phagocytes involved [5]. Furthermore, the elevated autoantibodies against oxidized LDL were reported in hypertension [6], as well as in the pre-hypertensive stage [7] associated with clinical conditions.

Several assays have been developed to quantify the circulating oxidized LDL and their relations to cardiovascular disease [8,9]. In addition, evaluation of new antibodies have been proposed to evaluate more specific epitopes of the modified LDL [10,11].

Taking into account that uncontrolled hypertension is closely related to cardiovascular events, we hypothesized a link between blood pressure levels and some parameters of the adaptive immunity among hypertensive subjects.

A total of 58 individuals of both genders with established diagnosis of hypertension were consecutively included in the study. All patients were under anti-hypertensive treatment (alone or combined) with angiotensin converting enzyme inhibitor (ACEI), angiotensin receptor blocker (ARB) or diuretics (mainly hydrochlorothiazide). We excluded subjects with diabetes mellitus, those with renal or liver disease, or presenting acute or chronic inflammatory disease. We also excluded smokers, those under hormone replacement therapy, statin therapy or

Table 1
Major characteristics of the study population.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Male gender, n (%)</th>
<th>BMI, kg/m², median (IQR)</th>
<th>SBP, mm Hg, median (IQR)</th>
<th>DBP, mm Hg, median (IQR)</th>
<th>Glucose, median (IQR)</th>
<th>Cholesterol, median (IQR)</th>
<th>LDL-C, median (IQR)</th>
<th>HDL-C, median (IQR)</th>
<th>TG, median (IQR)</th>
<th>Creatinine, median (IQR)</th>
<th>GFR, median (IQR)</th>
<th>ACEI/ARB, n (%)</th>
<th>Diuretics, n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, median (IQR)</td>
<td>60 (50–67)</td>
<td>27.9 (25.1–31.2)</td>
<td>137 (129–149)</td>
<td>80 (79–90)</td>
<td>86 (76–91)</td>
<td>184 (162–223)</td>
<td>117 (89–134)</td>
<td>46 (39–60)</td>
<td>100 (69–147)</td>
<td>1.0 (0.8–1.1)</td>
<td>83 (61–144)</td>
<td>29 (100)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>19 (65)</td>
<td>16 (55)</td>
<td>150 (150–165)</td>
<td>100 (89–101)</td>
<td>96 (92–102)</td>
<td>207 (183–233)</td>
<td>130 (111–151)</td>
<td>51 (42–58)</td>
<td>119 (87–186)</td>
<td>0.8 (0.6–1.0)</td>
<td>68 (62–82)</td>
<td>19 (66)</td>
<td>15 (52)</td>
</tr>
<tr>
<td>Better BP control (n = 29)</td>
<td>56 (53–65)</td>
<td>27.5 (25.1–29.5)</td>
<td>160 (150–165)</td>
<td>100 (89–101)</td>
<td>96 (92–102)</td>
<td>207 (183–233)</td>
<td>130 (111–151)</td>
<td>51 (42–58)</td>
<td>119 (87–186)</td>
<td>0.8 (0.6–1.0)</td>
<td>68 (62–82)</td>
<td>19 (66)</td>
<td>15 (52)</td>
</tr>
<tr>
<td>Poorer BP control (n = 29)</td>
<td>56 (53–65)</td>
<td>27.5 (25.1–29.5)</td>
<td>160 (150–165)</td>
<td>100 (89–101)</td>
<td>96 (92–102)</td>
<td>207 (183–233)</td>
<td>130 (111–151)</td>
<td>51 (42–58)</td>
<td>119 (87–186)</td>
<td>0.8 (0.6–1.0)</td>
<td>68 (62–82)</td>
<td>19 (66)</td>
<td>15 (52)</td>
</tr>
<tr>
<td>P-value</td>
<td>0.05</td>
<td>0.76</td>
<td><0.001</td>
<td><0.001</td>
<td><0.001</td>
<td>0.07</td>
<td>0.06</td>
<td>0.52</td>
<td>0.38</td>
<td>0.11</td>
<td>0.01</td>
<td><0.001</td>
<td>0.01</td>
</tr>
</tbody>
</table>

⁎ Corresponding author at: Cardiology Division, Department of Medicine, Federal University of Sao Paulo, Rua Pedro de Toledo 276, 04039-030, Sao Paulo, SP, Brazil. Tel./fax: +55 11 50848777.
E-mail addresses: mcoizar@terra.com.br, mcoizar@cardiol.br (M.C.O. Izar).
1 Drs Fonseca H and Gidlund M contributed equally to this article.

References

0167-5273 Crown Copyright © 2012 Published by Elsevier Ireland Ltd. Open access under the Elsevier OA license. doi:10.1016/j.ijcard.2012.03.043
with previous history of cancer. The study was approved by the local Ethics Committee of our university, and informed consent was obtained from all patients prior to protocol initiation.

Twelve-hour fasting samples were obtained for all patients. Glucose, total cholesterol, high-density lipoprotein cholesterol and triglycerides were determined enzymatically (Operasystem Bayer, Leverkusen, Germany), and LDL-cholesterol was estimated by the Friedewald equation [12]. Plasma peroxidation was evaluated by the thiobarbituric acid-reactive substances (TBARS) assay, which measures malondialdehyde [13]. Glomerular filtration rate (GFR) was estimated by the Cockcroft-Gault equation [14].

Preparation of oxidized LDL measurement was previously reported [9]. To determine the abs to copper-oxidized LDL, we used an established assay as previously described [15]. To minimize false positive results due to cross-reactivity with antigen naive epitopes, abs titers were expressed as the reactivity index (RI), calculated as, RI = (ODsample − ODsample blank) / (ODIgG − ODIgG blank) where IgG was used as a control. Samples were run in triplicate and the variation within the triplicates did not exceed 5% of the mean.

Autoantibodies anti-apoB epitope derived from ApoB100 of LDL (anti-apoB-D abs) were measured by ELISA [15]. The apoB-D is a 22

<table>
<thead>
<tr>
<th></th>
<th>Better BP control (n = 29)</th>
<th>Poorer BP control (n = 29)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-6 (pg/ml)*, median (IQR)</td>
<td>7.5 (6.8–9.5)</td>
<td>12.1 (6.9–16.1)</td>
<td>0.50</td>
</tr>
<tr>
<td>IL-8 (pg/ml)*, median (IQR)</td>
<td>2.2 (1.3–4.2)</td>
<td>2.8 (2.5–3.9)</td>
<td>0.02</td>
</tr>
<tr>
<td>IL-10 (pg/ml)*, median (IQR)</td>
<td>9.1 (8.6–11.1)</td>
<td>4.1 (3.9–4.7)</td>
<td>0.001</td>
</tr>
<tr>
<td>TBARS (μmol/ml), median (IQR)</td>
<td>1.3 (0.8–1.2)</td>
<td>1.5 (1.2–1.9)</td>
<td>0.29</td>
</tr>
<tr>
<td>Anti-oxLDLabs (RI)*, median (IQR)</td>
<td>1.7 (1.3–2.2)</td>
<td>1.2 (1.2–1.3)</td>
<td>0.001</td>
</tr>
<tr>
<td>Anti-apoB-D (RI)*, median (IQR)</td>
<td>0.5 (0.2–0.6)</td>
<td>0.9 (0.8–1.0)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

IQR = interquartile range; IL-6 = interleukin 6; IL-8 = interleukin 8; IL-10 = interleukin 10; TBARS = Thio-barbituric acid-reactive substance; Anti-oxLDL abs = anti oxLDL autoantibodies; Anti-apo B-D = antibodies antiapoB-D peptide; RI = Reactivity index; * log-transformed variables.

Comparisons between groups were made by the unpaired Student’s t test.

Table 2 Oxidative, inflammatory and immune parameters per group.

Fig. 1. Scatter plots showing correlations between anti-OxLDL autoantibodies (abs) and systolic (SBP) (A) and diastolic (DBP) blood pressures (B). There was an inverse correlation between anti-oxLDL abs and both SBP (ρ = −0.379, P = 0.004) and DBP (ρ = −0.425, P = 0.002). Scatter plots showing correlations between the apoB-D peptide and systolic (SBP) (C) and diastolic (DBP) blood pressures (D). There was a positive correlation between the antibodies against the apoB-D peptide and blood pressure. An inverse correlation was obtained between apoB-D abs and both SBP (ρ = 0.558, P < 0.001) and DBP (ρ = 0.335, P = 0.01). Scatter plots showing correlations between interleukin-10 (IL-10) and oxLDL abs (E) and anti-apo B-D abs (F). There was a positive correlation between IL-10 with oxLDL abs titers (r = 0.444, P = 0.001), and an inverse correlation with anti-apo B-D abs (r = −0.501, P = 0.004). RI = reactivity index. All correlations were made by Spearman’s correlation test.
amino acid peptide from a region of apoB-100 not accessible to trypsin, and has been proposed as an independent predictor of atherogenic processes. To determine the abs to apoB-D, we used our own established assay as previously described [10].

The pro-inflammatory cytokines, interleukin 6 (IL-6) and interleukin 8 (IL-8), as well as the anti-inflammatory interleukin 10 (IL-10) were measured by ELISA, according to the information provided by the manufacturer (R&D Systems, Minneapolis, MN).

Blood pressure (BP) was evaluated as previously reported [6]. Briefly, an average of three measurements of sitting BP obtained after a 5-min resting period and repeated at 5-min intervals was recorded. For comparisons, the BP obtained was used to form two groups, considering those with better and poorer BP control (according to the 50th percentile).

Numerical data were reported as median values and interquartile range, or means and SEM. Categorical variables were expressed as number of subjects and percent values. Variables with non-Gaussian distribution were log-transformed for comparisons. Unpaired Student’s t test was used for independent comparisons between groups, and Pearson χ² test was used for categorical variables. Correlations between variables were tested by Spearman test. A P value of <0.05 was considered significant. Statistical Package for the Social Sciences software (version 17.0 SPSS Inc; Chicago, IL), was used in all analysis.

Major characteristics of the study population are shown in Table 1. Subjects were predominantly middle-aged, overweight males. There were small differences on biochemistry parameters or antihypertensive strategies, and the major differences were in the BP control.

Compared to poorer BP control, we observed lower titers of IL-8 and higher titers of IL-10 in the group of better BP control. No differences between groups were seen for IL-6 and TBARS (Table 2). Inverse relationship was observed between the IL-10 and both systolic and diastolic BP.

Subjects in the group of better BP control had higher titers of anti-oxLDL abs and lower titers of anti-apoB abs (Table 2). In addition, we observed inverse correlation between systolic and diastolic BP levels and the titers of anti-oxLDL abs (Fig. 1A–B). Conversely, the titers of the anti-apoB-D abs were positively correlated with systolic and diastolic BP (Fig. 1C–D). Furthermore, we also observed correlation between the titers of IL-10 with the titers of anti-oxLDL abs and inverse correlation of IL-10 with the titers of the anti-apoB-D abs (Fig. 1E–F). Finally, regarding the titers of TBARS, we observed an inverse association with the titers of the anti-oxLDL abs (rho = −0.35, P < 0.01, Spearman test), while the anti-apoB-D abs were correlated with the titers of IL-8 (rho = 0.377; P < 0.005, Spearman test).

In conclusion, we reported a link between hypertension and adaptive immunity responses to oxLDL and peptides of Apo B 100. Our results suggest that BP values are correlated with the inflammatory and immune milieu. Further studies are needed to identify products of LDL oxidation as potential biomarkers of coronary disease as well as their role in the modulation of atherosclerosis in hypertensive patients.

The authors of this manuscript have certified that they comply with the Principles of Ethical in Publishing in the International Journal of Cardiology [16].

This study was supported in part by the National Council of Science and Technology (CNPq), grant # 2008/57685-7. Dr. Fonseca H. received grant support from the Coordination for the Improvement of Higher Level of Education Personnel (CAPES).

References