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An alkaline peptidase was purified from the viscera of the silver mojarra (Diapterus rhombeus) in a three-
step process: heat treatment, ammonium sulphate fractionation and molecular exclusion chromatogra-
phy (Sephadex� G-75), with final specific activity 86-fold higher than the enzyme extract and yield of
22.1%. The purified enzyme had an estimated molecular mass of 26.5 kDa and NH2-terminal amino acid
sequence IVGGYECTMHSEAHE. Higher enzyme activity was observed at pH 8.5 and between 50 and
55 �C. The enzyme was completely inactivated after 30 min at 55 �C and it was significantly more stable
at alkaline pH. Km, Kcat and Kcat � K�1

m values, using BApNA as substrate, were 0.266 mM, 0.93 s�1 and
3.48 mM�1 s�1, respectively. Enzyme activity increased in the presence of the ions (1 mM) K+, Li+ and
Ca2+, but was inhibited by Fe2+, Cd2+, Cu2+, Al3+, Hg2+, Zn2+ and Pb2+ as well as by the trypsin inhibitors
TLCK and benzamidine.

� 2011 Elsevier Ltd. Open access under the Elsevier OA license. 
1. Introduction

The Brazilian coast has a large diversity of fish species, of which
approximately 130 have some commercial value. Fish are usually
processed before their commercialisation, thus generating large
amounts of waste, which is usually discarded in the environment
without any previous treatment, causing serious pollution prob-
lems. According to Bezerra et al. (2005), fish viscera are rich in pep-
tidases, which are enzymes that occur naturally in all organisms
and are involved in a variety of physiological and biotechnological
processes. Due to the diverse feeding habits of fish in general, dif-
ferences in characteristics and composition of their enzymes are
expected. Therefore, studies describing enzymes isolated from
these animals represent the first step to evaluate their potential
for technological application. In fact, to save time and money,
experiments at laboratory conditions are essential for future pro-
duction in industrial scale.

Peptidases are amongst the most important groups of commer-
cial enzymes, representing up to 60% of enzymes marketed in the
world. In the digestive tract of fish, one of the main peptidases is
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40; fax: +55 81 21268576.
).

sevier OA license. 
trypsin (EC 3.4.21.4), a serinopeptidase that cleaves peptide bonds
at the carboxy end of the amino acid residues arginine and lysine.
This enzyme plays a key role in the digestion of dietary proteins
and is also responsible for the activation of trypsinogen and other
zymogens (Polgár, 2005).

Recently, many studies have reported the use of common and
simple chromatographic procedures on the purification of trypsin
isoforms from various fish species, such as Colossoma macropomum
(Bezerra et al., 2001; Marcuschi et al., 2010), Oreochromis niloticus
(Bezerra et al., 2005), Gadus macrocephalus (Fuchise et al., 2009),
Theragra chalcogramma (Kishimura, Klomklao, Benjakul, & Chun,
2008) and Katswonus pelanis (Klomklao, Kishimura, Nonami, &
Benjakul, 2009). These protocols proved to be efficient in purifying
fish trypsins in a few steps, and are of relative low cost, being easily
adapted to industrial scale and affording between 1 and 3 g of puri-
fied trypsin per 1 kg of wet waste. These studies also emphasise
features in these enzymes that enable their use in industrial
processes, with applications as additives for washing powder
(Espósito et al., 2009), food processing (Shahidi & Kamil, 2001)
and pharmacology (Jónsdóttir, Bjarnason, & Gudmundsdóttir,
2004).

The silver mojarra (Diapterus rhombeus) is a marine finfish from
the northeastern Brazilian coast, of economic and ecological
importance that can be used to extract proteases for biotechnolog-
ical applications. This fish belongs to the family Gerreidae and is
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found in coastal estuaries throughout the tropical waters of the
Atlantic Ocean (Austin, 1973). According to the Brazilian Environ-
mental Agency IBAMA (2008), 2080 tons of mojarras were
captured in northeastern Brazil in 2006, which generated an esti-
mated annual discharge of about 100 tons of viscera. Therefore,
the investigation into enzymes present in this type of byproduct
may help optimise the use of these resources, by adding value to
these industrial segments.

The aim of the present study was to purify a trypsin from the
digestive tract of the silver mojarra and characterise its physical
and biochemical properties, such as the effect of temperature,
pH, ions, inhibitors, substrate concentration and NH2-terminal
amino acid sequence.
2. Materials and methods

2.1. Samples

Specimens of D. rhombeus were obtained from a fishing commu-
nity in Itapissuma, Pernambuco, Brazil. Fish were packed in ice and
transported to the laboratory. Average weight and length was
350 ± 20 g and 28 ± 2 cm, respectively. The intestine and pyloric
caeca of ten fish (about 30 g) were removed and stored in a freezer
at �25 �C until analysis.

2.2. Enzyme extract

Fish intestines and pyloric caeca were mixed together and
homogenised at a concentration of 40 mg ml�1 (w.v�1) of tissue
in a solution of 0.01 M Tris–HCl, pH 8.0, with 0.9% NaCl, using a
tissue homogeniser (Bondine Electric Company, Chicago, IL) at
300 rpm for 60 s. The homogenate was then centrifuged (Herolab
Unicen MR Centrifuge, Germany) at 10,000g for 25 min at 4 �C
for the removal of insoluble particles. The supernatant (enzyme
extract) was collected and stored in a freezer at �25 �C for subse-
quent use in the purification steps.

2.3. Enzyme assay and protein determination

Enzyme activity was measured using BApNA (Na-benzoyl-L-argi-
nine-p-nitroanilide) prepared with dimethylsulphoxide (DMSO), as
substrate specific for trypsin. The assay was carried out by mixing
30 ll of sample with 140 ll of 0.1 M Tris–HCl, pH 8.0 and 30 ll of
8 mM BApNA (final concentration of 1.2 mM) for 10 min at 25 �C.
The formation of p-nitroaniline (product) was measured at
405 nm with a microplate reader (Bio-Rad X-Mark spectrophotom-
eter, California, USA). A blank control was prepared by replacing
sample with 0.1 M Tris–HCl, pH 8.0 (Souza, Amaral, Santo, Carvalho,
& Bezerra, 2007). One unit (U) of enzyme activity was defined as the
amount of enzyme capable of hydrolysing 1 lmol of BApNA per min
under the established conditions, using a molar coefficient of
9100 mM�1 cm�1. The protein content was obtained by measuring
the absorbance of the samples at 260 nm and 280 nm based on the
method proposed by Warburg and Christian (1941), using the fol-
lowing equation: [protein] mg ml�1 = A280 � 1.5 � A260 � 0.75.

2.4. Enzyme purification

For each purification step, trypsin activity was assayed using
BApNA as substrate. The parameters used were: degree of purifica-
tion (specific activity rate between the purification step sample
and enzyme extract) and yield (total activity rate between the
purification step sample and enzyme extract). The enzyme extract
was placed in a water bath at 45 �C for 30 min and then placed on
ice for rapid cooling. This material was centrifuged at 10,000g for
25 min at 4 �C. The precipitate was discarded and the supernatant
(heated enzyme extract) was collected. Precipitation was then per-
formed with ammonium sulphate, yielding fractions of 0–30%, 30–
60% and 60–90% salt saturation. The salt was slowly added to the
extract under agitation. After the total dissolution of the salt, the
extract was kept at 4 �C for 4 h. Each salt saturation fraction was
centrifuged at 10,000g for 25 min at 4 �C and the precipitate was
resuspended with 38.5 ml of 0.1 M Tris–HCl, pH 8.0. The fraction
with the greatest specific activity for trypsin was applied to a
Sephadex� G-75 gel filtration column. Maintaining a flow of
20 ml h�1, aliquots of 2 ml were collected and subsequently ana-
lysed for protein content and specific enzyme activity (Bezerra
et al., 2001).

2.5. SDS–PAGE

The samples were subjected to sodium dodecylsulphate poly-
acrylamide gel electrophoresis (SDS–PAGE), following the method
described by Laemmli (1970), using a 4% concentration gel and 15%
separation gel. SDS–PAGE was conducted at 11 mA using a vertical
electrophoresis system (Vertical Electrophoresis System, Bio-Rad
Laboratories, Inc.). The molecular mass of the purified protein band
was estimated by comparison with a molecular mass standard
(Amersham Biosciences, UK) containing myosin heavy chain
(205 kDa), b-galactosidase (116 kDa), phosphorylase b (97 kDa),
transferrin (80 kDa), bovine serum albumin (66 kDa), glutamate
dihydrogenase (55 kDa), ovalbumin (45 kDa), carbonic anhydrase
(30 kDa) and trypsin inhibitor (21 kDa).

2.6. Optimum pH and stability

These experiments were carried out using different buffer solu-
tions: 0.1 M citrate–phosphate (pH from 4.0 to 7.5), 0.1 M Tris–HCl
(pH from 7.2 to 9.0) and 0.1 M glycine-NaOH (pH from 8.6 to 11.0).
Optimum pH was determined by mixing 30 ll of the purified en-
zyme with 140 ll of buffer solutions, then adding 30 ll of sub-
strate (8 mM BApNA, generating a final concentration of 1.2 mM)
for 10 min at 25 �C. The influence of pH on enzyme stability was
determined by incubating the purified enzyme with various buffer
solutions, at a ratio of 1:1 for 30 min at 25 �C. Then, 30 ll aliquots
were withdrawn and used to assess the residual activity of the en-
zyme at optimum pH presented by peptidase, using 8 mM BApNA
as substrate. The highest enzymatic activity observed for the en-
zyme in different buffers was defined as 100%.

2.7. Optimum temperature and thermal stability

The effect of temperature on the purified enzyme activity and
stability was evaluated at temperatures ranging from 25 to 80 �C.
For optimal temperature, the assay was carried out by incubating
the samples with the substrate, 8 mM BApNA, in a water bath. To
test thermal stability, the enzyme was incubated in a water bath
for 30 min and the remaining activity was then measured at
25 �C, using the method previously described for BApNA.

2.8. Inhibitor effect on trypsin activity

The inhibition tests were performed using the methodology
adapted by Bezerra et al. (2005). A 30 ll sample of the purified en-
zyme was incubated in microplates for 30 min with 30 ll of differ-
ent peptidase inhibitors whilst maintaining a final concentration of
2 mM. The inhibitors used in this test were ethylene diamine tetra-
acetic acid – EDTA (metallopeptidase inhibitor), b-mercaptoethanol
(reducing agent), phenylmethylsulphonyl fluoride – PMSF (serine
peptidases inhibitor), benzamidine (trypsin inhibitor), tosyl lysine
chloromethyl ketone – TLCK (trypsin inhibitor) and tosyl phenylal-



Fig. 1. Polyacrylamide gel electrophoresis (SDS–PAGE) of the trypsin purified from
the viscera of silver mojarra (D. rhombeus); lane 1: standard protein markers of
different molecular mass; lane 2: purified trypsin.
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anyl chloromethyl ketone – TPCK (chymotrypsin inhibitor). After
incubation, 110 ll of buffer 0.1 M Tris–HCl and 30 ll of BApNA
were then added. After 10 min, the absorbance reading was per-
formed in microplate reader (BioRad xMarktm) at a wavelength
of 405 nm.

2.9. Metal ions effect on trypsin activity

Aliquots of 30 ll of the purified enzyme were incubated with
30 ll of various metals (AlCl3, BaCl2, CaCl2, CdCl2, CuCl2, FeCl2,
HgCl2, KCl, LiCl, MnCl2, PbCl2, ZnCl2) for 30 min in microplates with
final concentration of 1 mM. Next, 110 ll of 0.1 M Tris–HCl, pH 8.0,
and 30 ll of the substrate BApNA were added. After 10 min of reac-
tion, enzyme activity was measured in a microplate reader at
405 nm.

2.10. Michaelis–Menten kinetic assay

The substrate used in the kinetic test was BApNA (final concen-
tration from 0 to 4.8 mM), prepared with DMSO. The reaction was
performed in triplicate in microplates and consisted of a mixture of
a 30 ll solution of purified enzyme (109 lg protein ml�1) with
140 ll of 0.1 M Tris–HCl, pH 8.0 and 30 ll of substrate. The release
of the product (p-nitroaniline) was monitored by a microplate
reader at 405 nm. The activity values (U s�1) obtained for each
substrate concentration were plotted on a graph and the Michae-
lis–Menten asymptotic kinetic parameters (Vmax and Km) were cal-
culated using the MicrocalTM OriginTM program version 6.0
(Software Inc., USA).

2.11. Sequencing of NH2-terminal region

The purified trypsin was sequenced at the Biochemistry Labora-
tory of the Escola Paulista de Medicina, Universidade Federal de
São Paulo (Brazil). The NH2-terminal amino acid sequence was ob-
tained through Edman degradation using a PPSQ-23 sequencer
(Shimadzu, Tokyo, Japan). The NH2-terminal amino acid sequence
obtained for the present study was aligned with other’s sequences
using the software BioEdit Sequence Alignment Editor (Hall, 1999).

2.12. Statistical analysis

All data was analysed using one-way analysis of variance (AN-
OVA) complemented with Tukey’s test. Differences were reported
as statistically significant when p < 0.05. The statistical program
used was MicrocalTM OriginTM version 8.0 (Software, Inc., US).

3. Results and discussion

A trypsin from the pyloric caeca and intestine of the silver mo-
jarra (D. rhombeus) was isolated through a three-step purification
process (n = 3). The specific activity in the initial enzyme extract
was 1.81 ± 0.3 mU mg�1, whilst total activity was 916.10 ±
81.3 mU. The first step (heat treatment) resulted in a slight in-
crease in the specific activity, generating a purification factor of
1.2 ± 0.2-fold and a yield of 113.4 ± 12.5%. In the second step
(ammonium sulphate fractionation), the fraction with greatest
specific activity was 30–60% of salt saturation, in which it was ob-
served a 5.6 ± 3.1-fold increase was observed, with a yield of
36.2 ± 7.6%. Following gel-filtration chromatography (Sephadex�

G-75), the degree of purification was 86.8 ± 7.7-fold higher than
the enzyme extract, yielding 22.1 ± 6.4%. The chromatography pool
revealed only one band in the SDS–PAGE with an estimated molec-
ular mass of 26.5 kDa (Fig. 1). The literature reports that the molec-
ular mass of fish trypsins usually varies between 24 kDa and
28 kDa (Castillo-Yáñes, Pacheco-Aguiar, García-Carreño, & Toro,
2005; Fuchise et al., 2009; Heu, Kim, & Pyeun, 1995; Klomklao,
Benjakul, Visessanguan, Khishimura, & Simpsom, 2007).

This same protocol has been successfully used in the purifica-
tion of other trypsins from tropical fish (Bezerra et al., 2001,
2005; Souza et al., 2007). Bezerra et al. (2001) reported the impor-
tance of the heat treatment in the purification of a trypsin from
C. macropomum. Despite the low purification factor obtained in this
stage, heating eliminates thermolabile proteins and promotes the
hydrolysis of the thermostable contaminating proteins. This prop-
erty improves the performance in the subsequent stages of ammo-
nium sulphate fractionation and gel-filtration chromatography.

After purification, the physical and chemical characteristics of
the trypsin isolated from the digestive tract of D. rhombeus were
evaluated. Assays to define the optimal pH revealed greater en-
zyme activity in the range of alkaline pH (7.5–11.0), with peak
activity at 8.5 (Fig. 2A). These results found for D. rhombeus are
common amongst digestive enzymes from fish, as reported for T.
chalcogramma (Kishimura et al., 2008) and O. niloticus (Bezerra
et al., 2005), but lower than those found in P. saltatrrix (Klomklao
et al., 2007). The effects of pH on the stability of D. rhombeus tryp-
sin are shown in Fig. 2B. The enzyme exhibited stability in an alka-
line pH range, maintaining over 85% of its optimum activity
between pH 8.5 and 11.0, whereas from 35% to 65% of the residual
activity was maintained at pH from 4.5 to 8.0. However, only 10%
of the residual activity was observed at pH 4.0. Changes in pH may
affect both the substrate and enzyme by changing the charge dis-
tribution and conformation of the molecules (Klomklao et al.,
2006). Most enzymes undergo irreversible denaturation in a very
acid or alkaline solution, resulting in a loss of activity.

The optimal temperature of the purified enzyme (Fig. 2C) was
between 50 and 55 �C. A sharp decrease in activity was found at
temperatures above 60 �C and negligible activity was observed at
85 �C. The loss of activity was presumably caused by thermal
denaturation of the purified enzyme. Similar results are reported
for Mugil cephalus (Guizani, Rolle, Marshall, & Wei, 1991) and



Fig. 2. Effect of pH and temperature on activity of the trypsin purified from silver mojarra (D. rhombeus), using BApNA as substrate; (A) trypsin activity in different buffers:
citrate–phosphate (j, pH 4.0–7.5), Tris–HCl (s, pH 7.2–8.5) and glycine-NaOH (N, pH 8.7–11.0); (B) trypsin stability after incubation for 30 min at 25 �C in different pH (from
4.0 to 11); (C) trypsin activity in temperatures ranging from 25 to 85 �C; (D) trypsin stability after incubation for 30 min in different temperatures (from 25 to 85 �C). Values
are shown as mean ± SD of triplicates of three purified extracts.

Table 1
Effects of metal ions and inhibitors on activity of trypsin from
silver mojarra
(D. rhombeus).

Ions/inhibitors Residual activity (%)

*Control a100.00
[Ions] 1 mM
Ca2+ b183.13 ± 0.75
Li+ c146.18 ± 14.32
K+ c134.46 ± 3.77
Ba2+ a108.35 ± 4.52
Mn2+ a101.24 ± 4.52
Fe2+ d79.57 ± 8.53
Cd2+ d78.69 ± 0.75
Cu2+ e69.27 ± 0.00
Al3+ e66.96 ± 0.75
Hg2+ f46.89 ± 4.52
Zn2+ f28.77 ± 13.41
Pb2+ g0.00 ± 0.00

[Inhibitor] 2 mM
PMSF d77.40 ± 7.37
PMSF (4 mM) f32.64 ± 3.03
TPCK a103.64 ± 13.03
TLCK g0.00 ± 0.00
Benzamidine f25.01 ± 0.47
EDTA de78.51 ± 11.09
2-Mercaptoethanol e64.61 ± 1.87

Different superscript letters represent statistical differences
(p < 0.05) of residual activity of purified trypsin incubated
with various metal ions and inhibitors solutions.
* Residual activity without any ion or inhibitor.

780 J.F. Silva et al. / Food Chemistry 129 (2011) 777–782
S. s. caerulea (Castillo-Yáñes et al., 2005), both with an optimal
temperature of 50 �C, and for C. macropomum, with an optimal
temperature of 60 �C. The high optimal temperature may be due
to the fact that D. rhombeus lives in warm waters, whereas most
species analysed thus far live in cold waters. With regard to ther-
mostability, the trypsin from the fish cited proved also to be sensi-
tive to temperatures above 45 �C, which is similar to the results
found in the present study (Fig. 2D). Kishimura et al. (2008) re-
ported a direct correlation between the temperature of the habitat
and the thermal stability of fish trypsin.

The effects of metal ions (1 mM) on the activity of trypsin from
D. rhombeus are displayed in Table 1. Enzyme activity was higher
than the control (100%) when incubated in the presence of K+

(34%), Li+ (46%) and Ca2+ (83%). Calcium was shown to be a positive
effector for D. rhombeus trypsin. In fact, this ion is known as a clas-
sic activator for mammal trypsins. However, Bezerra et al. (2005)
and Souza et al. (2007) found that trypsin from the Nile tilapia
and spotted goatfish were inhibited by calcium. These results sug-
gest that there are differences in calcium dependence amongst the
trypsins from mammal and some fish. The activity of trypsin from
the Nile tilapia and spotted goatfish was also inhibited in the pres-
ence of Mn2+ and Ba2+, but trypsin isolated from the species
analysed in the present study exhibited no traces of enzyme inhi-
bition with these ions. Fe2+, Cd2+, Cu2+ and Al3+ decreased enzyme
activity by about 20–35%, whereas Hg2+ and Zn2+ inhibited trypsin
activity by 53% and 71%, respectively. However, these inhibition
values are less expressive than those described for the spotted
goatfish. In the presence of Pb2+, there was total inactivation of
the trypsin purified from D. rhombeus. Ions such as Cd2+ and Hg2+
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are known to act on sulfhydryl residues in proteins (Aranishi et al.,
1998) and, according to Bezerra et al. (2005), inhibition caused by
these metal ions suggests the importance of sulfhydryl residues to
the catalytic action of this peptidase. This relevance was also rein-
forced by the inhibition (approximately 35%) of the D. rhombeus
trypsin activity by 2-mercaptoethanol. Moreover, the influence of
metals ions or other inhibitory compounds over trypsin activity
has been employed as a means to detect xenobiotics in a solution
containing commercially available trypsin (Šafařik et al., 2002).

The influence of some synthetic inhibitors on the activity of the
enzyme purified from the viscera of the D. rhombeus is displayed in
Table 1. The trypsin from D. rhombeus was completely inhibited in
the presence of TLCK. Similar results are reported for the Nile
tilapia (Bezerra et al., 2005), bluefish (Klomklao et al., 2007) and
yellowfin tuna (Klomklao et al., 2006). TLCK is a well-known tryp-
sin-specific inhibitor, inactivating only trypsin-like enzymes by
forming a covalent bond with the histidine residue from the cata-
lytic site and then blocking the substrate-binding portion at the ac-
tive centre (Jeong, Wei, Preston, & Marshall, 2000). The purified
enzyme from D. rhombeus was also inhibited by 75% by benzami-
dine (a synthetic trypsin inhibitor), 36% by 2-mercaptoetanol,
22.8% and 71.36% by 2 mM and 4 mM PMSF, respectively (a serine
proteinase inhibitor) and 21.5% by EDTA. TPCK (a typical chymo-
trypsin inhibitor) had no effect on the activity of the purified en-
zyme. The pattern of action of these inhibitors was characteristic
of those reported for trypsins, thereby supporting the identity of
this purified enzyme as trypsin.

Kinetics parameters of BApNA hydrolysis rates were examined
in the present study (Table 2). Michaelis constant (Km) indicate
the affinity of the enzyme to the substrate, Kcat indicates molecular
catalytic constant and Kcat � K�1

m indicates its catalytic efficiency.
Table 2
Kinetic parameters for trypsin from silver mojarra (D. rhombeus) using B

Species Parameters

Km (mM) Kcat (s�1)

D. rhombeus 0.266 0.93
E. japonica 0.049 1.55
S. officinalis 0.064 2.32
P. macracanthus 0.312 1.06
G. morhua 0.102 0.70
Bovine 0.650 2.00
Swine 0.820 1.55
S. salar 0.300 0.80
O. niloticus 0.772 –

Fig. 3. NH2-terminal amino acid residues alignment of trypsin from silver mojarra (D. rh
acid residues as the main sequence (present study) and letters indicate amino acids that
Km, Kcat and Kcat � K�1
m values for the trypsin-like enzyme from D.

rhombeus were 0.266 mM, 0.93 s�1 and 3.48, respectively. This
Km value is lower than that reported for trypsin from Priacanthus
macrachanhtus (Hau & Benjakul, 2006), O. niloticus (Bezerra et al.,
2005), Salmo salar (Outzen, Berglund, Smalas, & Willassen, 1996),
bovine (Asgeirsson, Fox, & Bjarnason, 1989) and swine (Outzen
et al., 1996) and higher than that reported for S. s. caerulea (Castil-
lo-Yáñes et al., 2005) and E. japonica (Heu et al., 1995). This result
indicates the considerable affinity of the purified enzyme from D.
rhombeus to the BApNA substrate. The catalytic constant (Kcat) of
the trypsin purified in the present study was higher than the value
reported for G. morhua (Asgeirsson et al., 1989) and S. salar (Outzen
et al., 1996). A higher molecular activity (Kcat) denotes a greater
amount of substrate molecules that are converted into product
by a single enzyme, thus indicating that the enzyme purified in
the present study is as highly active as the other fish trypsin. The
catalytic efficiency (Kcat � K�1

m ) results reveal that the trypsin puri-
fied in the present study is able to hydrolyse a classic trypsin syn-
thetic substrate more efficiently than the trypsin from bovine
(Asgeirsson et al., 1989), swine (Outzen et al., 1996), P. macracan-
thus (Hau & Benjakul, 2006) and S. salar (Outzen et al., 1996), but
less efficiently than that from E. japonica (Heu et al., 1995), S. offi-
cinalis (Balti, Barkia, Bougatef, Ktari, & Nasri, 2009) and G. morhua
(Asgeirsson et al., 1989).

The 15 NH2-terminal amino acids residues in D. rhombeus trypsin
were IVGGYECTMHSEAHE. This NH2-terminal amino acid sequence
was compared to that of other vertebrates (Fig. 3). According to Cao
et al. (2000), the first seven NH2-terminal amino acid residues (IVG-
GYEC) and the residues between positions 15 and 19 (QVSLN) are
generally conserved in vertebrate trypsins. In mammals, however,
the glutamic acid (E) in position 6 is replaced by threonine (T)
ApNA as substrate.

References

Kcat/Km (s�1 mM�1)

3.48 Present study
31.00 Heu et al. (1995)
36.25 Balti et al. (2009)

3.40 Hau and Benjakul (2006)
6.80 Asgeirsson et al. (1989)
3.10 Asgeirsson et al. (1989)
1.89 Outzen et al. (1996)
2.67 Outzen et al. (1996)
– Bezerra et al. (2005)

ombeus) with other fish trypsin and bovine trypsin; dots represent the same amino
are different. The alignment was performed with the software BioEdit (Hall, 1999).
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(Huerou, Wicker, Guilloteau, Toullec, & Puigserver, 1990). As can be
seen in Fig. 3, this NH2-terminal amino acid sequence from D. rhomb-
eus exhibited high homology and revealed similarity to that of G.
macrocephalus (Fuchise et al., 2009), Theragra chalcograma (Kishim-
ura et al., 2008) and Eleginus gracilis (Fuchise et al., 2009).

The results of the present study suggest that the peptidase puri-
fied from D. rhombeus is a trypsin. Because of its high activity and
stability at pH from 8.5 to 11, this enzyme has good potential to be
used as an additive in commercial detergent formulations, which
demonstrates the feasibility of using waste from D. rhombeus as a
source of biomolecules of biotechnological interest. Enzymes from
fish viscera contribute toward sustainable development by utilis-
ing byproducts from waste that are usually discarded.
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