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A conserved dibasic site is essential for correct processing of the
peptide hormone AtRALF1 in Arabidopsis thaliana
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Abstract Prohormone proteins in animals and yeast are typi-
cally processed at dibasic sites by convertases. Propeptide hor-
mones are also found in plants but little is known about
processing. We show for the first time that a dibasic site up-
stream of a plant peptide hormone, AtRALF1, is essential for
processing. Overexpression of preproAtRALF1 causes semi-
dwarfism whereas overexpression of preproAtRALF1(R69A),
the propeptide with a mutation in the dibasic site, shows a normal
phenotype. RALF1(R69A) plants accumulate only the mutated
proprotein and not the processed peptide. In vitro processing
using microsomal fractions suggests that processing is carried
out by a kexin-like convertase.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.
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1. Introduction

Rapid alkalinization factor (RALF) is a 5 kDa ubiquitous

plant peptide hormone first isolated from tobacco leaves that

induces a rapid and strong alkalinating activity in cell suspen-

sion cultures and activates a mitogen-activated protein kinase

(MAP-kinase) [1]. When the active peptide was applied exoge-

nously to Arabidopsis seedlings it inhibited root growth and

development [1]. Gene expression profiles of two RALF pep-

tides isolated from hybrid poplar leaves and five isoforms iso-

lated from fertilized ovule and ovary cDNA libraries of

Solanum chacoense also suggest a developmental role [2,3].

RALF peptide regulates the extracellular pH at the root hair

tip during root hair development and also mobilizes extracellu-

lar and intracellular Ca+2 [4,5]. The peptides are synthesized as

preproproteins and when tobacco preproRALF was fused to

GFP it was visualized in the ER and, later on, in the apoplast

[6]. In tomato cell suspension cultures, two membrane proteins
Abbreviations: RALF, rapid alkalinization factor; MAP-kinase,
mitogen-activated protein kinase; 35S, cauliflower mosaic virus 35S
RNA promoter
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of 25 and 125 kDa are cross-linked to RALF peptide and may

be part of a membrane receptor [7].

The primary structure of RALF precursors contains a con-

served dibasic site upstream of the active peptide suggesting

that they undergo protein processing similar to prohormones

of animals and yeast [1,8]. In animals and yeast, proteases such

as kexin, furin and convertases PC2, PC1/PC3, PC4, PACE4,

PC5/6 and PC7, all of them members of the subtilisin family

of serine proteases, are responsible for the recognition and pro-

cessing of preprohormones at dibasic sites [9,10]. In plants,

subtilisin-like proteinases have been isolated and characterized

from several species. Arabidopsis exhibit 56 annotated subtilas-

es [11], and two of them exhibit high similarity to the mamma-

lian kexin proteases. Subtilisin-like activity similar to

prohormone convertases has also been observed in leaves

and plant microsomes [12–14].

To date, no evidence has been presented that dibasic sites are

essential for in vivo processing of plant peptide hormone pre-

cursors. Here we report that Arabidopsis plants overexpressing

AtRALF1 gene (35S:AtRALF1) show a semi-dwarf pheno-

type, and accumulate the processed peptide. On the other

hand, plants overexpressing the mutated AtRALF1 precursor

with an Arg to Ala substitution at the conserved dibasic site

[35S:AtRALF1(R69A)] fail to exhibit the semi-dwarf pheno-

type. The 35S:AtRALF1(R69A) plants show normal root

and leaf growth with accumulation of the mutated proprotein

and nearly undetectable levels of the processed peptide. In

addition, protein extracts from the microsomal fractions were

able to cleave the preproAtRALF1, but not the mutated pre-

cursor preproAtRALF1(R69A). Our results demonstrate that

an intact dibasic site upstream of the active peptide hormone

RALF is essential for proper processing and suggest that, like

in animals and yeast, this processing in plants is likely done by

a kexin-like convertase.
2. Materials and methods

2.1. Plant transformation and root and leaf measurements
Arabidopsis plants (Columbia ecotype) were grown in environmental

chambers at 16 h light, 22 �C and 8 h dark, 18 �C. For AtRALF1 gene
overexpression, the intronless AtRALF1 gene was obtained from
genomic DNA of Arabidopsis using PCR. The mutation of AtRALF1
to generate AtRALF1(R69A) was also performed by PCR. The prim-
ers used for cloning are available in Supplementary Table S1. For clon-
ing strategy, details of AtRALF1 gene mutation and plant
transformation see Supplementary methods. Root and leaf measure-
ments were obtained as described [15].
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Third-generation transgenic plants with high level of expres-
sion of AtRALF1 and the mutated AtRALF1(R69A). (A) Three
plants overexpressing AtRALF1 (lines 35S:AtRALF1-I, II and III).
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2.2. Purification of AtRALF1(R69A) proprotein, digestion, N-terminal
sequencing and isolation of active peptide

Crude protein extracts were prepared and purified with preparative
slab gels as described [16] (Supplementary methods). Purified AtRAL-
F1(R69A) protein was digested over-night at room temperature using
Endoproteinase Glu-C (Boehringer Mannheim) according to manufac-
turer�s instructions. Digested products were separated using a reversed
phase C18 HPLC column (218TP54, 5-lm 4.6 · 250 mm column, Vy-
dac) and fractions containing RALF peptides were detected using ELI-
SA. N-terminal sequence of the peptides was obtained using Edman
chemistry on an Applied Biosystems (Foster City, CA) Procise Model
492 protein sequencer.

AtRALF1 and AtRALF1(R69A) active peptides were purified from
leaves of Arabidopsis plants as described [1] (Supplementary methods).

2.3. In vitro synthesis of labeled peptide and Arabidopsis microsomal
fraction

The wild-type AtRALF1 gene and its mutated form AtRAL-
F1(R69A) were amplified by PCR and cloned into the pGBKT7 vector
(Clontech). For primer sequences see Supplementary Table S2. Precur-
sors were produced using the TNT� coupled wheat germ extract sys-
tem (Promega) according to manufacturer�s instructions. The
translation reaction was made in the presence of Redivue [35S] methi-
onine (GE Healthcare Bio-sciences).

Crude microsomal membrane extracts were obtained as previously
described [17] with some modifications. Cells from a 7-day-old Arabid-
opsis cell suspension culture [18] were collected by a brief spin and then
pulverized in a mortar in the presence of liquid N2. The lysate was
homogenized in ice-cold buffer (50 mM Tris–HCl, pH 8.5, 5 mM
EDTA) and filtered through two layers of miracloth (Clontech). The
homogenate was centrifuged at 12000·g for 15 min at 4 �C and the
supernatant was collected and then centrifuged at 100000·g for 1 h
at 4 �C. The resulting microsomal pellet was resuspended in 100 ll of
1% Triton X-100 ice-cold solution to a final protein concentration of
1.25 lg/ll. The resulting protein concentration was measured with
Bradford reagent (Sigma) and visualized by SDS–PAGE.

The proprotein processing assay was carried out in a 200 ll final
volume reaction by mixing 5 ll of labeled peptides with 10 lg of
total microsomal protein extract in Kex2p reaction buffer [19].
The mix was incubated for 1 h at 30 �C followed by TCA precipita-
tion. The pellet was washed with 200 ll of cold acetone and resus-
pended in Laemmli sample buffer. Samples were separated in
polyacrylamide gels (SDS–PAGE) that were later dried and exposed
to X-ray film.
(B) Two plants overexpressing AtRALF1(R69A) (lines 35S:AtRAL-
F1(R69A)-I and II) and a control plant transformed with empty
vector. (C) Phenotype comparison among control, 35S:AtRALF1 and
35S:AtRALF1(R69A) plants in advanced stage of maturation. Control
and 35S:AtRALF1(R69A) plants show normal phenotypes while
35S:AtRALF1 plants show semi-dwarf phenotype.
3. Results

3.1. AtRALF1 mutation and plant transformation

In order to evaluate the significance of the conserved dibasic

site in the maturation of preproRALF, a mutation that re-

placed the second Arg for an Ala (Arg69 in AtRALF1, locus

At1g02900) was introduced into the Arabidopsis AtRALF1

gene. Transgenic plants carrying the AtRALF1 gene or the

mutated AtRALF1 transgene [AtRALF1(R69A)] under the

control of the constitutive CaMV 35S promoter were obtained

and overexpressors were identified based on kanamycin resis-

tance and RNA blots. Over thirty plants of 35S:AtRALF1

and 35S:AtRALF1(R69A) independent transgenic lines were

produced and they all showed a high level of expression of

the transgenes. An RNA gel blot of nine selected transgenic

lines is shown to illustrate the level of transcript accumulation

for both 35S:AtRALF1 and 35S:AtRALF1(R69A) plants

(Supplementary Fig. S1).

3.2. Phenotype of transgenic plants and quantitative analyses

All 35S:AtRALF1 plants overexpressing AtRALF1 gene

showed a semi-dwarf phenotype (Fig. 1A and Supplementary

Fig. S2) as opposed to the normal phenotype showed by all
AtRALF1(R69A) plants (Fig. 1B). AtRALF1(R69A) overex-

pressors were undistinguishable from wild-type or plants trans-

formed with an empty vector (Fig. 1B). We are now using the

third generation of the transgenic plants and they all show sta-

bility of both semi-dwarf and normal phenotypes. Fig. 1C

shows mature control plants, 35S:AtRALF1 and 35S:AtRAL-

F1(R69A) plants. Mature plants overexpressing AtRAL-

F1(R69A) gene could not be set apart from control plants

and could be easily separated from plants overexpressing

AtRALF1. No differences in flowering time were observed in

transgenic plants (data not shown).

Quantitative analyses were obtained for leaf length and

width and for root growth (Supplementary Figs. S3 and S4).

Evaluation of leaf growth revealed reduced leaf dimensions

for 35S:AtRALF1 plants, but similar leaf sizes for both

35S:AtRALF1(R69A) and control plants (Fig. 2A). Roots of

12 days old seedlings of 35S:AtRALF1 plants are much smal-

ler than roots of 35S:AtRALF1(R69A) plants (Fig. 2B).
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Fig. 2. Leaf and root growth of Arabidopsis transgenic plants. (A)
Leaves from 1 to 6 of adult plants were digitalized for dimensional
comparison. Plants overexpressing the AtRALF1(R69A) show normal
growth when compared to reduced growth of plants overexpressing the
AtRALF1 precursor. Plants carrying an empty vector and wild-type
plants were used as controls. (B) Seedlings growing in plates for root
measurements. Seedlings overexpressing the 35S:AtRALF1 transgene
show reduced root growth when compared to seedlings overexpressing
the 35S:AtRALF1(R69A) transgene.
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Fig. 3. Detection of AtRALF proproteins and AtRALF active
peptides in leaf protein extracts. (A) Western blot analysis of crude
protein extracts from plants overexpressing the 35S:AtRALF1 and
35S:AtRALF1(R69A) transgenes. Levels of endogenous AtRALF (in
control and wild-type plants) are too low to be detected. (B) A
Coomassie Brilliant Blue stained replicate gel is shown as a protein
loading control. R69A propeptide and rapid alkalinization factor
(RALF) peptide are positive controls. (C) Western blot analysis of
AtRALF peptides purified from leaf protein extracts by reversed phase
chromatography. Active fractions in the alkalinization assay of the
AtRALF1 extract and correspondent fractions of AtRALF1(R69A)
extract are numbered from I to IV. Arrows indicate bands identified
using an antibody raised against RALF peptide. Standard protein
bands are shown on the right.
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3.3. Identification of unprocessed and processed precursors

Crude protein extracts from 35S:AtRALF1(R69A) plants

separated in SDS/PAGE gels showed a strong band about

twice the size of RALF peptide in a protein blot (Fig. 3A). This

band has a molecular weight (Mr) of approximately 10 kDa

and it is in accordance with the expected molecular weight

for AtRALF1 precursor lacking the signal peptide. A weak

band of the same size could also be detected in crude protein

extracts from plants overexpressing AtRALF1 transgene. Nei-

ther wild-type plants nor plants transformed with an empty

vector showed bands in crude protein extracts. Same amounts

of protein were loaded in the gel (Fig. 3B).

We also isolated the active processed RALF peptides from

leaves of Arabidopsis plants. Crude protein extracts from

plants overexpressing the AtRALF1 and AtRALF1(R69A)

transgenes were obtained and loaded in a C-18 flash column

chromatography. After freeze-drying, the 60% methanol frac-

tion yielded 67 and 66 mg of protein for AtRALF1 and

AtRALF1(R69A) extracts, respectively. The materials were

resuspended in appropriate buffer and loaded into a RE-

SOURCE-3 ml HPLC reversed phase column. Fractions were

tested in the alkalinization assay and RALF peptide activity

was detected only in fractions 26–29 of the AtRALF1 purified

extract. Fractions from 22 to 33 of AtRALF1 extract and cor-

respondent fractions of AtRALF1(R69A) extract were com-

bined every three fractions, lyophilized and loaded in an

SDS–PAGE gel. Western blot analyses with anti-RALF
antibody revealed the presence of a band in lane I (fractions

22–24), II (fractions 25–27) and III (fractions 28–30) of the

AtRALF1 protein extract (Fig. 3C). A hardly noticeable band

can be seen in lane II (fractions 25–27) of the AtRAL-

F1(R69A) extract (Fig. 3C).

3.4. Mutated unprocessed precursor

Preparative slab gels were used to isolate and confirm the

identity of the mutated unprocessed proprotein showed in

Fig. 4A. The purified putative precursor was digested with

Endo-Glu-C and ELISA was used to identify the digested frag-

ments. AtRALF1 deduced preproprotein has six Endo-Glu-C

cleavage sites and also a predicted signal peptidase cleavage

site between amino acids Ala26 and Gly27 (Fig. 4A). Enzyme

immunoassay (ELISA) performed in HPLC fractions of the

Endo-Glu-C digested and undigested putative AtRAL-

F1(R69A) precursor detected two peaks in the digested sample

that were absent in the undigested precursor (Fig. 4B). The

first peak contained a peptide resulted from Endo-Glu-C cleav-

age at the amino acid position Glu65. The second peak
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Fig. 4. Identification of the amino acid substitution (R69A) in the
precursor preproAtRALF1(R69A) extracted from Arabidopsis leaves.
(A) Primary structure of the preproAtRALF1 protein. The arrow
shows the cleavage site for the enzyme Signal peptidase and the
asterisks indicate possible targets of Endo-Glu-C. The substitution of
the amino acid alanine at position 69 in the preproAtRALF1 is
indicated by a star. Sequenced peptides are double-underlined and
cysteine residues are underlined. (B) ELISA results of chromato-
graphic fractions of preproAtRALF1(R69A) prior to digestion (empty
circles) and after digestion with the enzyme Endo-Glu-C (black-filled
circles). Sequenced peptides are shown above their respective peaks.
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Fig. 5. In vitro digestion assay of native and mutated AtRALF
precursors by microsomal extract from Arabidopsis. Radiolabeled
[35S] methionine preproAtRALF1 and preproAtRALF1(R69A) were
incubated into kex2p reaction buffer with (+) or without (�)
microsomal protein extract. A prior digestion of precursors with
trypsin was carried out as a control. Molecular weight standards are
represented on the right.
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contained two peptides. One is identical to the first peak, and

the second is the N-terminal sequence of the unprocessed pro-

protein. The two sequences eluted together generating two N-

terminal sequences in a single eluting peak. The first eluting

peak had a retention time on HPLC similar to RALF peptide

standard (data not shown) and the N-terminal sequence ob-

tained covered the Arg69 to Ala69 amino acid substitution

(star in Fig. 4A).

3.5. In vitro cleavage of preproAtRALF1 by Arabidopsis

microsomal fraction

Radiolabeled wild-type preproAtRALF1 and mutated prep-

roAtRALF1(R69A) were produced by in vitro transcription

and translation and then incubated with protein extracts from

microsomal fractions of Arabidopsis cell suspension cultures.

The results in Fig. 5 show that only the preproAtRALF1

was processed when incubated with the microsomal protein ex-

tract. The mutated preproAtRALF1(R69A) remained intact.

The observed mass based on relative gel mobility of the band

matched the expected mass of the labeled N-terminal part of

the processed peptide plus the amino acids of the pGBKT7

vector, approx. 8874 Da. Both radiolabeled peptides were fully

digested when incubated with trypsin.
4. Discussion

RALF peptides are located in the C-terminal region of prep-

roproteins that share a conserved dibasic site upstream of the

active peptides [1–3,20]. Dibasic residues are also conserved in

the Phytosulfokine and Clavata families of peptide hormones
[8,21–23]. Such evidences suggest that, like in animals and

yeast, a dibasic site for processing may be essential for the mat-

uration of plant prohormones.

We generated a mutation in the second Arg of the At1-

gRALF1 precursor coded by the gene At1g02900, and our re-

sults confirm that a dibasic site is essential for proper

maturation and release of RALF active peptides in Arabidop-

sis. Lack of processing activity due to a single change in the

dibasic site has been shown using chimeric reporter proteins

in tobacco cell suspension culture [13].

Transgenic plants overexpressing the AtRALF1 gene show a

semi-dwarf phenotype while plants mutated at Arg69 do not

(Fig. 1). The lack of typical phenotype in 35S:AtRAL-

F1(R69A) plants was revealed in detail by quantitative analy-

ses of root and leaf growth (Fig. 2). It must be noted that the

shortening of aerial parts of 35S:AtRALF1 plants is somehow

unexpected since AtRALF1 isoform is expressed solely in

roots. Possibly, ectopic overexpression of AtRALF1 is inter-

fering in the normal perception of other (leaf) RALF isoform

peptides.

The absence of the semi-dwarf phenotype in 35S:AtRAL-

F1(R69A) plants indicates that no active AtRALF1 peptide

was being produced or released from mutated precursor in

the aerial parts of these plants, and protein analyses of trans-

genic plants confirm such hypotheses. Crude protein extracts

from 35S:AtRALF1(R69A) plants revealed an accumulation

of mutated precursor, but nearly undetectable levels of active

peptides (Fig. 3). The presence of a signal of low intensity is

probably due to endogenous conserved and ubiquitously ex-

pressed RALF isoforms [8,20].

Interesting to note that even with high levels of transgene

expression, no processed AtRALF1 peptide was detected in

protein extracts of 35SAtRALF1 plants. We were able to de-

tect the active peptide when crude extracts were enriched with

semi-purification of RALF peptides (Fig. 3C). This suggests a

fast turnover of the active AtRALF1 peptide as a way to con-

trol its activity.

In animals and yeast, the group of kexin-like serine proteases

is a branch of the subtilisin family that recognizes a more spe-

cific site generally composed by RR or KR [24]. In plants, a

kexin-like activity has been demonstrated to play a role in pro-

tein processing [12,13]. To start elucidating the nature of the
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processing enzyme of RALF peptides, we extracted proteins

from microsomal fractions (RER and Golgi complex) of Ara-

bidopsis cell suspension cultures and conducted experiments in

conditions proper to kex2p-like enzymes. Radiolabeled prep-

roRALF1 was processed to liberate a peptide with a molecular

weight equivalent to RALF active peptide, while radiolabeled

preproAtRALF1(R69A) showed no alteration (Fig. 5). This

result demonstrates that the processing enzyme may be a con-

vertase or kex2p-like subtilisin, similar to processing enzymes

of animals and yeast prohormones.

Our results set the beginning of a search for the processing

enzymes of propeptide hormones in plants. There is a large

number of RALF and RALF-like peptides in Arabidopsis

and it would be interesting to investigate how plants dealt with

specific processing considering that only two convertase-like

enzymes have been identified in the Arabidopsis genome [11].
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