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Metacaspase 2 of Trypanosoma brucei is a calcium-dependent
cysteine peptidase active without processing
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Abstract Metacaspases are cysteine peptidases that are dis-
tantly related to the caspases, for which proteolytic processing
is central to their activation. Here, we show that recombinant
metacaspase 2 (MCA2) from Trypanosoma brucei has argi-
nine/lysine-specific, Ca2+-dependent proteolytic activity. Auto-
catalytic processing of MCA2 occurred after Lys55 and
Lys268; however, this was shown not to be required for the en-
zyme to be proteolytically active. The necessity of Ca2+, but
not processing, for MCA2 enzymatic activity clearly distin-
guishes MCA2 from the caspases and would be consistent with
different physiological roles.
� 2007 Federation of European Biochemical Societies.
Published by Elsevier B.V. All rights reserved.
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1. Introduction

Metacaspases (MCAs) are Clan CD, family C14 cysteine

peptidases that were identified in plants, fungi and protozoa

based on homology with a caspase-like domain from Dictyos-

telium [1]. In general, MCAs possess the catalytic dyad of his-

tidine and cysteine that comprises the active site of the

caspases, but otherwise display low overall sequence similarity.

As caspases have a well-studied role in programmed cell death

(PCD), a similar function has been proposed for the MCAs.

There are five MCAs in Trypanosoma brucei, just three of

which (MCA2, MCA3 and MCA5) have preserved the cata-

lytic cysteine and histidine residues [2,3]. The necessity of these

three proteins for the bloodstream form of the parasite has

been investigated by RNAi and genetic deletion [4]. Cells re-

cover from sequential knockdown, but more acute simulta-

neous down-regulation of all three by RNAi led to a defect

in cytokinesis and cell death. No association between prosta-
Abbreviations: MCA, metacaspase; PCD, programmed cell death;
AMC, 7-amino-4-methylcoumarin; EF-Tu, elongation factor Tu;
GST, glutathione S-transferase; TLCK, tosyl-lysyl-chloromethylke-
tone
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glandin-induced PCD of T. brucei [5] and the presence of

MCA2, MCA3 and MCA5 was found [4]. MCA4, however,

was found to induce cell death when over-expressed in yeast

[2]. Taken together, the current evidence indicates that there

are functional MCAs in T. brucei, although their precise roles

need to be elucidated.

In this work, we show that MCA2 of T. brucei has cysteine

peptidase activity. This is Ca2+-dependent, with arginine/lysine

specificity, and is not dependent upon the autocatalytic pro-

cessing that the enzyme undergoes.
2. Materials and methods

2.1. Production of recombinant proteins
The MCA2 coding sequence was amplified from T. brucei genomic

DNA using oligonucelotides OL910 (GCCATATGTGCTCCTTAAT-
TACACAACTCTGTG) and OL909 (CTCGAGCTATTGGATAGA-
TCTGTCAACAG). The amplified sequence was inserted in to the
NdeI and XhoI sites of pET28a+ (Novagen) to generate pBP54,
encoding MCA2 with an N-terminal His-tag. The plasmid pBP54
was transformed into BL21:DE3 Escherichia coli and bacteria were
grown in Overnight Express medium (Novagen) for 16 h and then
lysed in B-Per protein extraction solution (Pierce). His-MCA2 was
purified using Ni-NTA affinity matrix (Qiagen), followed by anion ex-
change chromatography on a Poros HQ column (ABI) in 50 mM Tris–
HCl, pH 7.0, over a 0–1 M NaCl gradient. MCA2 was collected in the
flow-through from this chromatography step. The plasmid pGEXtu-
fAwt, encoding GST-tagged EF-Tu from E. coli, was kindly provided
by Professor Charlotte Knudsen (Aarhus University, Denmark). The
protein was expressed in BL21:DE3 at 28 �C for 4 h. GST-EF-Tu
was purified from cell lysates using glutathione-Sepharose (Sigma) in
50 mM Tris, pH 8.0, and elution with 20 mM glutathione.

2.2. Site-directed mutagenesis
MCA2 mutants (K55G, K268G and K55,268G, C212G, C213G)

were generated using the QuikChange Site-directed Mutagenesis Kit
(Stratagene) according to the manufacturer’s instructions. For
mutation of the Arg residue in the linker region, the primers were
5 0-GCAGCGGCCTGGTGCCGGGCGGCAGCCATATGTGC-3 0

and 5 0-GCACATATGGCTGCCGCCCGGCACCAGGCCGCTGC-
3 0. Incorporation of mutations was confirmed by DNA sequencing.

2.3. Protein cleavage assays and CaCl2-induced auto-processing of
MCA2

For CaCl2-induced auto-processing, MCA2 was incubated with
CaCl2 at 10 mM, unless otherwise indicated, for 30 min at 37 �C. Sam-
ples were analysed by reducing SDS–PAGE on 12% gels. For Edman
sequencing (University of Dundee Proteomics Facility), proteins were
transferred to PVDF membrane (Amersham).
blished by Elsevier B.V. All rights reserved.
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2.4. Fluorometric assays for MCA2 activity
MCA2 activity was assessed by measuring hydrolysis of the fluoro-

genic substrates Z-GGR-AMC and Z-GRR-AMC (Bachem), using
excitation and emission wavelengths of 355 nm and 460 nm, respec-
tively. Specific activities were calculated using a 7-amino-4-methyl-
coumarin standard (AMC). The substrates Abz-VRPRQ-EDDnp,
Abz-IKLRQ-EDDnp and Abz-IKLKQ-EDDnp synthesised according
to Hirata et al. [6] were used with excitation and emission wavelengths
of 320 nm and 420 nm, respectively. Substrates were used at 10 lM and
measurements collected on an En Vision plate reader (Perkin Elmer).
Assays were done in 50 mM Tris–HCl, pH 7.5, containing 150 mM
NaCl, 5 mM DTT and 10 mM CaCl2 unless otherwise stated. All exper-
iments were run in triplicate. Statistical analysis was performed using
Student’s t-test. A value of P < 0.05 was statistically significant.
3. Results

3.1. MCA2 has arginine/lysine specificity

When expressed in bacteria, the N-terminal His-tag of

MCA2 was removed, as an anti-His antibody failed to detect

the expressed protein. The N-terminal tag remained intact

when active-site mutants of MCA2 were expressed (not

shown), indicating that the N-terminal cleavage was autocata-

lytic. To determine the site of cleavage, MCA2 lacking the His-

tag was partially purified using anion exchange chromatogra-

phy, and the truncated protein subjected to N-terminal

sequencing (Fig. 1A). This revealed that the recombinant pro-

tein had been cleaved after an Arg residue that derives from
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Fig. 1. Cleavage specificity of MCA2. (A) Expression and partial
purification of MCA2. Whole bacterial lysates expressing MCA2 (lane
1) and MCA2 after a one step partial purification using anion
exchange chromatography (lane 2) were analysed by SDS–PAGE. The
N-terminus of processed MCA2 (underlined) was determined by
Edman sequencing. The inferred P1 residue is in bold. (B) Cleavage of
Escherichia coli GST-EF-Tu by MCA2-expressing bacterial cell
lysates. Lane 1, GST-EF-Tu; lane 2, GST-EF-Tu + MCA2-lysate;
lane 3, MCA2-lysate. Two major GST-EF-Tu degradation products
(arrowed) were subjected to Edman sequencing. The resulting N-
terminal sequences are underlined. The inferred P1 residues are in
bold.
the expression vector, thus demonstrating that MCA2 will ac-

cept Arg at the P1 position. This specificity was confirmed by

our observation that a predominant E. coli protein was de-

graded during MCA2 expression. The degraded protein was

identified by mass spectrometry as elongation factor Tu (EF-

Tu). To identify the cleaved sites, recombinant GST-EF-Tu

was purified and incubated with bacterial expression extracts

containing MCA2. This resulted in the production of two ma-

jor proteins (Fig. 1B), for which N-terminal sequences were

obtained. The upper protein yielded the N-terminus of the

GST fusion. The lower protein contained a mixture of two se-

quences (ALEGDA and GSALKA), showing cleavage after a

Lys and an Arg, respectively. These data indicate that MCA2

has Arg/Lys specificity. To facilitate purification and further

biochemical analysis of MCA2, the Arg in the linker sequence

was mutated to Gly. This lead to retention of the His-tag and

permitted affinity purification of recombinant MCA2. This re-

combinant enzyme was used for all analyses except where sta-

ted otherwise.

The ability of MCA2 to cleave the substrates Z-GGR-AMC

and Z-GRR-AMC was assessed. MCA2 cleaved both sub-

strates well, with the rate of cleavage for Z-GGR-AMC being

1.5-fold greater than that for Z-GRR-AMC. In addition, the

tetrapeptide substrates Abz-VRPRQ-EDDnp, Abz-IKLRQ-

EDDnp and Abz-IKLKQ-EDDnp [7] were also cleaved well

by MCA2 (Abz-VRPRQ-EDDnp > Abz-IKLRQ-EDDn-

p > Abz-IKLKQ-EDDnp using 10 mM substrate). Further,

we found that MCA2 has a pH optimum of 7.0 and was inhib-

ited by the cysteine/serine peptidase inhibitors leupeptin (93%

inhibition at 100 lM), antipain (91% inhibition at 100 lM),

and tosyl-lysyl-chloromethylketone (TLCK) (70% inhibition

at 100 lM). E-64, a potent inhibitor of clan CA cysteine pep-

tidases but which is not effective against other clan CD pepti-

dases, did not inhibit MCA2 at 10 mM.

3.2. Ca2+-dependent activity of MCA2

As type II MCAs from Arabidopsis thaliana exhibit a Ca2+-

dependent activity against Arg/Lys-specific substrates [8], we

tested the Ca2+-dependency of MCA2 activity. MCA2 activity

in the presence of 0.5 mM Ca2+ was boosted approximately 2-

fold by the addition of 10 mM CaCl2 (Fig. 2A). MCA2 activity

was completely abolished by the presence of the Ca2+-chelating

agent EGTA (Fig. 2A). The effects of Ca and EGTA were sig-

nificant when compared to buffer control (P < 0.05). Other

divalent cations Cu2+, Mg2+, Mn2+ and Zn2+ were unable to

enhance MCA2 activity when used at 10 mM (not shown).

MCA2 activity was responsive to Ca2+ concentrations in a

dose-dependent manner up to 10 mM, where the enhancing ef-

fect began to plateau (Fig. 2B).

Most mammalian caspases require proteolytic processing to

convert the inactive zymogen into an active peptidase [9].

MCAs from Leishmania major [10,11], A. thaliana [8,12] and

yeast [13] also undergo caspase-like processing. Therefore,

we asked whether Ca2+-induced activation of MCA2 was

accompanied by proteolytic processing events. Purified recom-

binant MCA2 was incubated with CaCl2 and analysed by

SDS–PAGE. As seen in Fig. 2C, 1 mM CaCl2 was sufficient

to induce autolytic processing of MCA2, generating two dis-

tinct products of approximately 30 kDa and 6 kDa. These

two fragments were sequenced by Edman degradation and

found to possess N-termini that were consistent with cleavage
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Fig. 2. CaCl2 induces cleavage and activation of MCA2. (A) Cleavage of Z-GGR-AMC by MCA2 was measured in a buffer containing 0.5 mM
CaCl2, supplemented with 10 mM CaCl2 or 10 mM EGTA. MCA2 activity is expressed as a relative value and given as means ± S.D. *P < 0.05;
**P < 0.001 when compared to buffer control. (B) Cleavage of Z-GGR-AMC by MCA2 was measured by fluorometric assay in buffer supplemented
with the indicated concentration of CaCl2. (C) MCA2 was incubated at 37 �C for 30 min with the indicated concentrations of CaCl2 and analysed by
SDS–PAGE. (D) Activities of MCA2 and the mutants MCA2C212G and MCA2C213G were measured in the presence of 10 mM CaCl2 using Z-GGR-
AMC. MCA2 specific activities are expressed as relative values and given as means ± S.D. *P < 0.05 when compared to MCA2 control.
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after Lysine 55 (generating the 30 kDa product) and Lysine

268 (generating the 6 kDa product). A band at �5 kDa ap-

peared even at 0.1 mM CaCl2, which could be the result of

an initial cleavage after Lysine 268, but we failed to confirm

this using Edman degradation. When processed MCA2 was

analysed by size exclusion chromatography, all proteolytic

products were recovered in the same fractions (not shown),

indicating that MCA2 auto-processing products remain associ-

ated. Similarly, when Ca2+-activated MCA2 was purified by

Ni-NTA Sepharose, all processed fragments bound to the re-

sin. In the absence of the three-dimensional structure, we are

unable to conjecture how these fragments associate, however

non-reducing SDS–PAGE indicated that they are not linked

by disulphide bonds (not shown).

A sequence alignment of caspases and trypanosome MCAs

around the active site predicts that Cys213 is the active site cys-

teine in MCA2 [3]. There is an additional Cys at position 212,

which is conserved in all five T. brucei MCAs. To test whether

either Cys212 or Cys213 is required for catalytic activity, each

residue was individually mutated to Gly and the activity of the

mutants measured. No activity against Z-GGR-AMC could be

detected for MCA2C213G, indicating that this residue functions

in the active site (Fig. 2D). The activity of MCA2C212G was

also significantly reduced relative to wild-type MCA2, which

is probably due to the proximity of the substitution to the ac-

tive site. Consistent with this observation, MCA2C213G could

not undergo Ca2+-induced auto-processing, while MCA2C212G
could, albeit to a lesser extent than wild-type MCA2 (not

shown).

3.3. Auto-proteolysis is not essential for MCA2 activity

MCA2 activation requires Ca2+ and there is also auto-cata-

lytic processing, posing the question of whether cleavage at

Lys55 and/or Lys268 is required for MCA2 activity. The cur-

rent evidence is that processing is required for the activation of

both plant and yeast MCAs [5,13]. To address this, MCA2 was

treated with varying amounts of CaCl2, inducing auto-cata-

lytic processing (Fig. 3A). Half of each sample was treated

with EDTA to remove any free Ca2+ and MCA2 activity

was then measured. MCA2 activity increased with the amount

of free Ca2+ present. In samples in which free Ca2+ had been

depleted with EDTA, however, MCA2 activity was completely

eliminated (Fig. 3B). We conclude from this that processing is

not sufficient for MCA2 activity, but that the presence of Ca2+

is required. To determine whether processing is required for

MCA2 activation, the processing sites were removed by muta-

genesis. Both Lys55 and Lys268 were mutated to Gly, generat-

ing the double mutant MCA2K55,268G. This mutant was

resistant to Ca2+-induced auto-processing when compared to

the wild-type protein, even at the highest CaCl2 concentration

of 10 mM (Fig. 3C). Importantly, despite the lack of process-

ing in MCA2K55,268G, it exhibited full proteolytic activity in the

presence of Ca2+ (Fig. 3D). Altogether, these results show that

Ca2+ alone is sufficient for MCA2 activity.
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Fig. 3. Cleavage is not required for MCA2 activity. (A) MCA2 was activated with CaCl2 for 30 min at 37 �C. Free calcium was then removed, where
indicated, by the addition of excess EDTA. The samples were then analysed by SDS–PAGE. (B) The proteolytic activity of the samples in A was
measured by fluorometric assay (without EDTA, white bars; with EDTA, black bars) using the substrate Z-GGR-AMC. As a positive control,
MCA2 activity was measured in buffer containing 10 mM CaCl2 (grey bar). The activity (means ± S.D.) relative to the positive control is shown.
*P < 0.005 when compared to sample not treated with EGTA. NS: not statistically significant. (C) SDS–PAGE of MCA2 and the auto-processing
mutant MCA2K55,268G after treatment with CaCl2 for 30 min at 37 �C. (D) Activities of MCA2 and MCA2K55,268G measured using a fluorometric
assay as in Fig. 2D.
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4. Discussion

This is the first demonstration that a MCA of T. brucei is an

active cysteine peptidase. MCA2 has an Arg/Lys specificity at

the P1 position, being able to cleave after these residues in the

context of both a short peptide and a whole protein. The P1-

specificity of MCA2 is distinct from the Asp-specificity of

the caspases, but in accordance with the data observed for

MCAs from L. major [10], plants [8,12,14], yeast [12] and fila-

mentous fungi [15]. Other studies have found caspase-like

activities in lysates from yeast cells over-expressing YCA1

[13], or embryonic cells from Norway spruce [16]. However,

these studies provided no evidence that MCAs were directly

responsible for cleaving caspase substrates and it remains pos-

sible that Arg/Lys-specific MCAs activate enzymes with some

Asp-specificity. More recently, Guaragnella et al. [17] found

that yeast YCA1 was involved in acetic acid-induced cell

death, but that its effect could not be blocked with a cas-

pase-specific inhibitor, further suggesting that yeast MCA

activity is different from caspase activity.

The activity of MCA2 is strictly Ca2+-dependent, requiring

about 1 mM CaCl2 for maximum activity. Ca2+ concentrations

may reach this level in the acidocalcisome, an organelle rich in

ions and polyphosphate [18]. However, MCA2 was found to

occur predominantly in RAB11-positive endosomes in T. bru-

cei with no apparent localisation in acidocalcisomes [4]. The
basal cytosolic level of Ca2+ reported for bloodstream form

T. brucei is 100 nM, and is only increased by 40–60 nM with

the addition of thapsigargin [19]. The concentrations in differ-

ent sub-cellular compartments, and under different stimuli, are

unknown. The plant type II MCAs, to which T. brucei MCAs

are most similar in that they also display Ca2+-dependent

activities, also require higher than known endogenous concen-

trations of Ca2+ for their activity in vitro [12,14]. The calpains,

a large family of Ca2+-dependent cysteine peptidases, also re-

quire significantly higher levels of Ca2+ for activation

in vitro than have been measured intracellularly. It has been

postulated that association with cofactors or phospholipids,

proteolysis, or a combination of these factors, can lower the

Ca2+-activation threshold for calpains [20]. Similar mecha-

nisms might exist for MCA2 activation. For example,

in vivo, auto-catalytic processing may lower the Ca2+ require-

ment to within the normal intracellular range.

We have shown that MCA2 is auto-catalytically processed,

but that this processing is not necessary or sufficient for pepti-

dase activity, whereas processing is the key step in activation of

caspases. Similar processing is also considered to be essential

for the activity of plant and yeast MCAs [8], making the try-

panosomatid MCA2 unusual. It is possible that, in vivo, pro-

cessing has a role in MCA targeting and/or protein

interactions and thus may have an indirect regulatory func-

tion. We have so far been unable to observe MCA2 processing
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in vivo but its occurrence may be restricted to specific points of

the cell cycle [11] or specific induction conditions, such as

stress.

The Ca2+-dependency of MCA2 raises the possibility that

intracellular Ca2+ levels are used to control the physiological

function of MCA2. Ca2+ is probably an important regulator

of diverse cellular functions in trypanosomes and at least four

organellar pools of Ca2+ are available to the parasite, namely

the ER, nucleus, mitochondrion and acidocalcisome [21].

Interestingly, a Ca2+-dependent cell death pathway has been

described in T. brucei [22] and further studies will focus on

whether intracellular Ca2+ fluctuations or translocation of

MCA2 into Ca2+-rich compartments correlate with variations

in MCA activity and give insights into the protein’s in vivo

functions.
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