Please use this identifier to cite or link to this item: https://repositorio.unifesp.br/handle/11600/36118
Title: Altered sleep regulation in a mouse model of SCN1A-derived genetic epilepsy with febrile seizures plus (GEFS+)
Authors: Papale, Ligia A. [UNIFESP]
Makinson, Christopher D.
Ehlen, J. Christopher
Tufik, Sergio [UNIFESP]
Decker, Michael J.
Paul, Ketema N.
Escayg, Andrew
Emory Univ
Universidade Federal de São Paulo (UNIFESP)
Morehouse Sch Med
Georgia State Univ
Keywords: Sleep
Epilepsy
Scn1a
Sodium channel
Sleep deprivation
Issue Date: 1-Apr-2013
Publisher: Wiley-Blackwell
Citation: Epilepsia. Hoboken: Wiley-Blackwell, v. 54, n. 4, p. 625-634, 2013.
Abstract: Purpose Mutations in the voltage-gated sodium channel (VGSC) gene SCN1A are responsible for a number of epilepsy disorders, including genetic epilepsy with febrile seizures plus (GEFS+) and Dravet syndrome. in addition to seizures, patients with SCN1A mutations often experience sleep abnormalities, suggesting that SCN1A may also play a role in the neuronal pathways involved in the regulation of sleep. However, to date, a role for SCN1A in the regulation of sleep architecture has not been directly examined. To fill this gap, we tested the hypothesis that SCN1A contributes to the regulation of sleep architecture, and by extension, that SCN1A dysfunction contributes to the sleep abnormalities observed in patients with SCN1A mutations. Methods Using immunohistochemistry we first examined the expression of mouse Scn1a in regions of the mouse brain that are known to be involved in seizure generation and sleep regulation. Next, we performed detailed analysis of sleep and wake electroencephalography (EEG) patterns during 48 continuous hours of baseline recordings in a knock-in mouse line that expresses the human SCN1A GEFS+ mutation R1648H (RH mutants). We also characterized the sleepwake pattern following 6h of sleep deprivation. Key Findings Immunohistochemistry revealed broad expression of Scn1a in the neocortex, hippocampus, hypothalamus, thalamic reticular nuclei, dorsal raphe nuclei, pedunculopontine, and laterodorsal tegmental nuclei. Co-localization between Scn1a immunoreactivity and critical cell types within these regions was also observed. EEG analysis under baseline conditions revealed increased wakefulness and reduced nonrapid eye movement (NREM) and rapid eye movement (REM) sleep amounts during the dark phase in the RH mutants, suggesting a sleep deficit. Nevertheless, the mutants exhibited levels of NREM and REM sleep that were generally similar to wild-type littermates during the recovery period following 6 h of sleep deprivation. Significance These results establish a direct role for SCN1A in the regulation of sleep and suggest that patients with SCN1A mutations may experience chronic alterations in sleep, potentially leading to negative outcomes over time. in addition, the expression of Scn1a in specific cell types/brain regions that are known to play critical roles in seizure generation and sleep now provides a mechanistic basis for the clinical features (seizures and sleep abnormalities) associated with human SCN1A mutations.
URI: http://repositorio.unifesp.br/handle/11600/36118
ISSN: 0013-9580
Other Identifiers: http://dx.doi.org/10.1111/epi.12060
Appears in Collections:Em verificação - Geral

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.