Please use this identifier to cite or link to this item:
Title: Brain tissue MR-image segmentation via optimum-path forest clustering
Authors: Cappabianco, Fabio A. M. [UNIFESP]
Falcao, Alexandre X.
Yasuda, Clarissa L.
Udupa, Jayaram K.
Universidade Federal de São Paulo (UNIFESP)
Universidade Estadual de Campinas (UNICAMP)
Univ Penn
Keywords: Brain tissue segmentation
Field inhomogeneity/bias correction
Magnetic resonance images
Graph-based methods
Medical image analysis
Segmentation evaluation
Image clustering
Issue Date: 1-Oct-2012
Publisher: Elsevier B.V.
Citation: Computer Vision and Image Understanding. San Diego: Academic Press Inc Elsevier Science, v. 116, n. 10, p. 1047-1059, 2012.
Abstract: We present an accurate and fast approach for MR-image segmentation of brain tissues, that is robust to anatomical variations and takes an average of less than 1 min for completion on modern PCs. the method first corrects voxel values in the brain based on local estimations of the white-matter intensities. This strategy is inspired by other works, but it is simple, fast, and very effective. Tissue classification exploits a recent clustering approach based on the motion of optimum-path forest (OPF), which can find natural groups such that the absolute majority of voxels in each group belongs to the same class. First, a small random set of brain voxels is used for OPF clustering. Cluster labels are propagated to the remaining voxels, and then class labels are assigned to each group. the experiments used several datasets from three protocols (involving normal subjects, phantoms, and patients), two state-of-the-art approaches, and a novel methodology which finds the best choice of parameters for each method within the operational range of these parameters using a training dataset. the proposed method outperformed the compared approaches in speed, accuracy, and robustness. (C) 2012 Elsevier Inc. All rights reserved.
ISSN: 1077-3142
Other Identifiers:
Appears in Collections:Em verificação - Geral

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.