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to T. cruzi invasion. Importantly, addition of 
purified sphingomyelinase restored parasite 
invasion in cells depleted of ASM, directly 
linking sphingomyelin hydrolysis and cer-
amide generation to the T. cruzi entry process. 

Fourth, ceramide accumulation was detected in recently formed 
parasitophorous vacuoles, suggesting that this lipid plays an 
important role in the plasma membrane deformation process 
that is required to allow the large trypomastigotes (10–15 µm 
long) to enter host cells. These results significantly expand the 
previously reported role of lysosomal exocytosis in host cell 
invasion by T. cruzi (Tardieux et al., 1992; Andrade and 
Andrews, 2004) by showing that a lysosomal enzyme released 
extracellularly can promote parasite internalization.

Before this study, T. cruzi–induced membrane damage had 
only been detected after host cell invasion, during the process of 
disruption of the parasitophorous vacuole which allows the par-
asites to escape to replicate in the cytosol (Ley et al., 1990). Our 
current results show that the infective trypomastigote forms of 
T. cruzi, but not the noninfective epimastigotes, can also wound 
the plasma membrane of host cells. The capacity of trypomasti-
gotes to injure host cells may be a result of the residual activity 
of Tc-Tox, the acid-active pore-forming protein secreted by  
the infective stages of T. cruzi (Andrews and Whitlow, 1989;  
Andrews et al., 1990), and/or to the active motility of trypomas-
tigotes when attached to host cells (Video 2 and Fig. 2).

observed during the process of plasma membrane injury and 
repair (Reddy et al., 2001). Plasma membrane wounding, ly-
sosomal exocytosis, and a rapid form of endocytosis that fol-
lows cell injury were all shown to be functionally linked and 
dependent on secretion of the lysosomal enzyme ASM (Idone 
et al., 2008; Tam et al., 2010). These findings led us to hypoth-
esize that membrane damage and extracellular Ca2+ influx 
might also represent an early step in the interaction of T. cruzi 
trypomastigotes with host cells and that the steps of lysosomal 
exocytosis and endocytosis involved in the plasma membrane 
repair process are subverted by the parasites for invasion. In 
this study, we provide several lines of evidence in support of 
this view. First, host cell wounding was detected in cells ex-
posed to infective trypomastigotes, but not to noninfective 
epimastigotes, when plasma membrane repair was blocked by 
removing Ca2+ from the extracellular medium. Second, injur-
ing host cells with SLO during interaction with trypomasti-
gotes enhanced infection. Third, blocking lysosomal exocytosis 
or release of the lysosomal enzyme ASM, interventions which 
inhibit plasma membrane repair (Reddy et al., 2001; Tam  
et al., 2010), markedly reduced the susceptibility of host cells 

Figure 8. Vacuoles containing recently inter-
nalized parasites are enriched in ceramide while 
gradually acquiring Lamp1. (A) Single optical 
section of a HeLa cell expressing Lamp1-RFP (green) 
infected with trypomastigotes for 15 min, fixed, 
permeabilized, and stained with anti-ceramide anti-
bodies (red). Trypomastigotes (arrows) can be ob-
served in vacuoles enriched in ceramide (red), of 
which one has already fused with Lamp1-RFP–
containing lysosomes (green). The arrowhead indi-
cates a Lamp1-positive parasite vacuole that is 
negative for ceramide. Bar, 10 µm. (B) Quantification 
of intracellular parasites found in ceramide or 
Lamp1-enriched vacuoles over time. After 10 or  
20 min of exposure to trypomastigotes, cells were 
washed and either fixed or incubated for an addi-
tional 30 min before fixation (50-min time point). 
Cells were then permeabilized, stained with antibodies 
to ceramide (red) or Lamp1 (green), and confocal  
Z series were obtained in 15 fields for each condition, 
followed by quantification of parasites associated 
with ceramide and Lamp1. The data represents 
mean ± SD of the percentage of positive parasites 
per field (n = 15). (C) Representative images (single 
optical sections) of each time point in B. At 10 and 
20 min, protruding parasites were often observed in 
ceramide-enriched vacuoles (arrows). Ceramide, red; 
Lamp1, green; DAPI, blue. The arrowheads indicate a 
Lamp1-positive parasite vacuole that is negative for 
ceramide. Bars, 5 µm. These results are representa-
tive of three independent experiments.

 on O
ctober 15, 2015

jem
.rupress.org

D
ow

nloaded from
 

Published May 2, 2011

http://jem.rupress.org/


918 Cell injury and repair promotes T. cruzi infection | Fernandes et al.

inhibited by cholesterol depletion (Fernandes  
et al., 2007).

Trypanosomes move unidirectionally, with 
their anterior end oriented forward (Hill, 2003). 
Intriguingly, T. cruzi trypomastigotes attach and 
invade host cells by their posterior end, where 
the base of the flagellum is located. This implies 
that the driving force for parasitophorous vac-
uole formation must be provided by the host cell, 
because the parasite is hauled into the intracellu-
lar environment despite its own motility, which 
propels it in the opposite direction. T. cruzi inva-
sion is independent of host cell actin polymeriza-
tion (Schenkman and Mortara, 1992; Tardieux  
et al., 1992) but requires intact microtubules 

(Tardieux et al., 1992). These findings emphasize a role for the 
gradual fusion of lysosomes with the parasitophorous vacuole 
as a mechanism for the strong association of nascent parasi-
tophorous vacuoles with microtubules, resulting in an inter-
nalization and intracellular retention process dependent  
on microtubule motors (Tardieux et al., 1992; Andrade and 
Andrews, 2004). The model we propose in this study intro-
duces an important additional element in the T. cruzi invasion 
mechanism. Our model suggests that secretion of host lysosomal 
hydrolases, followed by lipid remodeling at the outer leaflet of 
the plasma membrane, plays a major role in the initial forma-
tion of T. cruzi–containing intracellular vacuole. Important steps 
of this process that still remain to be clarified include the na-
ture of the strong attachment that occurs between the poste-
rior end of trypomastigotes and the host cell surface and how 
the nascent parasitophorous vacuole pinches off from the 
plasma membrane.

Unexpectedly, when imaging trypomastigotes shortly after 
host cell invasion, we observed that their active motility often 
led them to collide with the plasma membrane and protrude 
from the cell with their anterior end pointing outwards 
(Video 4 and Fig. 7 B). Scanning electron micrographs re-
vealed fully internalized trypomastigotes surrounded by a 

We found that interaction with T. cruzi trypomastigotes 
stimulates formation of EEA1-positive endocytic vesicles in 
host cells, similar to what is observed in cells exposed to puri-
fied sphingomyelinase (Zha et al., 1998; Tam et al., 2010). 
ASM cleaves the head group of the abundant plasma membrane 
lipid sphingomyelin, generating ceramide in the outer leaflet 
of the plasma membrane (Schissel et al., 1998). Ceramide- 
enriched membrane microdomains have the property of 
coalescing and budding inwards (Holopainen et al., 2000; 
Gulbins and Kolesnick, 2003; van Blitterswijk et al., 2003; 
Trajkovic et al., 2008), providing a mechanism for endosome 
formation (Tam et al., 2010). EEA1 and ceramide were also 
found to accumulate in the trypomastigote-containing re-
cently formed parasitophorous vacuoles, strongly suggesting 
that T. cruzi subverts this ASM-dependent Ca2+-triggered 
endocytic process to form its intracellular compartment. Consis-
tent with this scenario, cells treated with the cholesterol- 
sequestering agent MCD (methyl--cyclodextrin) show a 
significant reduction in the number of Ca2+-dependent en-
dosomes formed after injury and fail to efficiently repair their 
plasma membrane after wounding. This finding is similar to 
what is observed for the T. cruzi invasion process, which in-
volves sphingolipid and cholesterol-enriched lipid rafts and is 

Figure 9. Ceramide-enriched T. cruzi-containing vac-
uoles are dependent on ASM activity. HeLa cells treated 
with control or ASM siRNA were exposed to trypomasti-
gotes for 20 min, fixed, and processed as described in Fig. 7. 
Confocal Z series analysis performed in 15 fields for each 
condition revealed a smaller percentage of ceramide posi-
tive vacuoles in cells treated with ASM siRNA (24%) when 
compared with control siRNA (60%). Representative images 
of single optical planes for each condition are shown (two 
examples of control siRNA and two examples of ASM-
siRNA). Ceramide, red; Lamp1, green; DAPI, blue. The arrows 
indicate parasites within vacuoles positive for ceramide 
staining in cells treated with the control siRNA. Arrowheads 
point to the DAPI-stained kinetoplasts of trypomastigotes 
within vacuoles negative for ceramide staining, in cells 
treated with ASM siRNA. Bars, 5 µm. These results are rep-
resentative of three independent experiments.
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with Bouin solution (71.4% saturated picric acid, 23.8% formaldehyde, and 
4.8% acetic acid), stained with Giemsa, and sequentially dehydrated in ace-
tone, followed by a graded series of acetone/xylol (9:1, 7:3, and 3:7) and, 
finally, xylol. This technique allows microscopic distinction between intra-
cellular parasites, which are seen surrounded by a halo, from attached para-
sites. The number of intracellular parasites was determined by counting at 
least 300 cells per coverslip in triplicate in a microscope (E200; Nikon) with 
a 100× 1.3 N.A. oil immersion objective. For immunofluorescence, cover-
slips were fixed in 4% paraformaldehyde (PFA) diluted in PBS for 15 min 
and processed as described in the next section.

Immunofluorescence. PFA-fixed cells were washed with PBS, quenched 
with 15 mM NH4Cl for 15 min, and incubated with PBS containing 2% 
BSA for 1 h. When processed for an inside/outside immunofluorescence assay 
(Tardieux et al., 1992), samples were incubated with rabbit anti–T. cruzi 
polyclonal antibodies for 1 h, followed by 1 h of anti–rabbit IgG conjugated 
to Alexa Fluor 594 secondary antibodies, to stain extracellular parasites. Cells 
were then permeabilized with 0.1% saponin for 30 min and incubated with 
mouse monoclonal antibodies to EEA1 (BD) for 1 h, followed by anti–mouse 
Alexa Fluor 488 secondary antibodies. For double labeling of EEA1 and 
Lamp1, coverslips permeabilized with 0.1% saponin were incubated with 
rabbit anti-EEA1 monoclonal antibodies and H4A3 anti–human Lamp1 
mouse monoclonal antibodies (Developmental Studies Hybridoma Bank) 
for 1 h, followed by anti–rabbit IgG Alexa Fluor 488 and anti–mouse IgG 
Alexa Fluor 594. The number of internalized parasites (negative for anti– 
T. cruzi antibody staining) that were positive or negative for EEA1 staining 
was determined using an epifluorescence microscope (E200) with a 100× 1.3 
N.A. oil immersion objective in at least 300 cells. Images in Fig. 6 are maxi-
mum projections of optical sections (0.13 µm Z step) acquired on a confocal 
system (SPX5; Leica) with a 63× 1.4 N.A. oil objective. Ceramide and Lamp1 
double staining was performed by sequential incubation with antibodies after 
blocking with 2% BSA as described. Samples were then permeabilized with 
0.1% saponin for 30 min and incubated with H4A3 anti–human Lamp1 
monoclonal antibodies (Developmental Studies Hybridoma Bank) for 1 h 
followed by anti–mouse IgG Alexa Fluor 488 secondary antibodies. Cells 
were then permeabilized with 0.2% Triton X-100 for 5 min (a condition 
which extracts ceramide more efficiently from T. cruzi than from host cells; 
Fig. S5) and incubated with anti-ceramide IgM monoclonal antibodies (clone 
15B4; Sigma-Aldrich) or IgM isotope control (Sigma-Aldrich) for 1 h, fol-
lowed by anti–mouse IgM Alexa Fluor 594 secondary antibodies. After trans-
ferring images to Volocity suite (PerkinElmer), the total fluorescence intensity 
of the channel was divided by the number of cells present in the field to de-
termine the mean fluorescence intensity per cell (Fig. S5). For the quantifica-
tion of ceramide- and Lamp1-positive parasites (Figs. 8 and 9), Z stacks (0.13 µm 
Z step between optical sections) of 15 random fields (at least 200 cells) were 
imaged with a confocal system (SPX5) with a 63× 1.4 N.A. oil objective. 
Stacks of individual channels (2,048 × 2,048 pixels) were imported to Voloc-
ity Suite (PerkinElmer), and parasites were considered ceramide- or Lamp1-
positive when staining outlining trypomastigotes could be visualized through 
several optical sections. To label ceramide present on the outer leaflet of the 
plasma membrane (Fig. 5), nonpermeabilized fixed cells were incubated for  
1 h with 15B4 anti-ceramide monoclonal antibodies, followed by Alexa 
Fluor 488–labeled secondary antibodies. Images were acquired using a  
microscope (E200) with a 40× 0.7 N.A. objective, equipped with a camera 
(DS-Fi1; Nikon) and Digital Sight. All samples were incubated with 10 µM 
DAPI (Sigma-Aldrich) for nuclei staining. Secondary antibodies were pur-
chased from Invitrogen. For Lamp1 and GPI double labeling (Fig. 7), subcon-
fluent cells were transduced using adenovirus encoding Lamp1-RFP and 
GPI-YFP, as described previously (Flannery et al., 2010), and imaged using a 
confocal system (SPX5) with a 63× 1.4 N.A. oil objective.

Drug, enzyme, and toxin treatments. Cells were treated with the indi-
cated concentrations of BEL (Sigma-Aldrich) for 30 min or Desipramine 
(Sigma-Aldrich) for 60 min before invasion experiments. Histidine-tagged 
SLO (carrying a cysteine deletion which eliminates the need for thiol activation) 

tight membrane layer that was continuous with the plasma 
membrane and that stretched outwards for the full length of 
the parasite. In some cases, these protruding trypomastigotes 
also showed the presence of Lamp1 in their parasitophorous 
vacuole, in agreement with the early fusion of lysosomes ob-
served during the T. cruzi entry process (Tardieux et al., 1992). 
This protrusion phenomenon facilitated the detection of 
ceramide enrichment in parasitophorous vacuoles surrounding 
recently internalized trypomastigotes by allowing imaging at 
sites separated from the ceramide-rich intracellular environ-
ment. The frequency by which trypomastigotes protrude and 
stretch the host cell membrane from the inside after invasion 
suggests that this could be another form of parasite-induced 
wounding. Rupture of the plasma membrane extensions cre-
ated during this process would allow Ca2+ entry, activating 
plasma membrane repair and increasing host cell susceptibil-
ity to additional invasion events. Interestingly, this scenario 
may explain why T. cruzi infection of mammalian cells does 
not follow a random Poisson distribution but corresponds 
more closely to a negative binomial prediction (Hyde and 
Dvorak, 1973). Wounding by protruding trypomastigotes may 
make host cells more susceptible to additional invasion events 
by triggering plasma membrane repair. These protruding 
events also offer an alternative explanation to earlier results of 
trypomastigotes that appeared to be enveloped by plasma 
membrane markers, after short periods of interaction with 
host cells (Woolsey et al., 2003).

The demonstration that ASM induces formation of  
ceramide-enriched endocytic vesicles that can facilitate try-
pomastigote entry significantly advances our understanding 
of the molecular mechanism that renders lysosomes essential 
players during the invasion of host cells by T. cruzi. Our results 
indicate that, by wounding host cells, T. cruzi trypomastigotes 
trigger plasma membrane repair, lysosomal exocytosis, ASM 
release, and formation of ceramide-enriched endosomes that 
facilitate parasite entry. Importantly, our findings also suggest 
that the tissue tropism exhibited by T. cruzi within its verte-
brate host, with the strong preference of the parasites to in-
vade cardiomyocytes and smooth muscle, may be related to 
the frequency by which these cell types are injured in vivo 
(McNeil and Steinhardt, 2003).

MATERIALS AND METHODS
Host cells and parasites. HeLa cells CCL-2.1 (American Type Culture 
Collection) were grown in DME (Sigma-Aldrich) supplemented with 10% 
FBS at 37°C with 5% CO2. Trypomastigotes from the Trypanosoma cruzi Y 
strain were obtained from the supernatant of infected monolayers of LLC-
MK2 cells, as previously described (Andrews et al., 1987). Epimastigotes from 
T. cruzi Y strain were cultured in liver infusion tryptose medium containing 
10% FBS at 28°C (Nogueira and Cohn, 1976).

Invasion assays and quantification of parasite invasion. 1.8 × 105 
HeLa cells/well were plated on glass coverslips placed in 35-mm wells 24 h 
before experiments. Trypomastigotes were washed twice with PBS and resus-
pended in 2% FBS-DME or 2% FBS-DME Ca2+ free (Invitrogen) with  
2 mM EGTA. Coverslips with attached HeLa cells were then incubated with 
108 T. cruzi trypomastigotes per well (final concentration of 5 × 107/ml) for 
the indicated periods of time at 37°C and washed five times with PBS to re-
move extracellular parasites. Samples were fixed for 5 min at room temperature 
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is extracted more efficiently from trypomastigotes than host cells after Triton 
X-100 permeabilization. Video 1 shows exocytosis of host cell lysosomes 
during interaction with T. cruzi trypomastigotes. Video 2 shows that extracel-
lular trypomastigotes cause mechanical deformations in the host cell mem-
brane before invasion. Video 3 shows invasion and intracellular motility of  
T. cruzi. Video 4 shows protrusion of motile intracellular trypomastigotes from 
the surface of host cells. Online supplemental material is available at http://
www.jem.org/cgi/content/full/jem.20102518/DC1.
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