Influence of Aerobic Training on the Reduced Vasoconstriction to Angiotensin II in Rats Exposed to Intrauterine Growth Restriction: Possible Role of Oxidative Stress and AT(2) Receptor of Angiotensin II

Influence of Aerobic Training on the Reduced Vasoconstriction to Angiotensin II in Rats Exposed to Intrauterine Growth Restriction: Possible Role of Oxidative Stress and AT(2) Receptor of Angiotensin II

Author Oliveira, Vanessa Autor UNIFESP Google Scholar
Akamine, Eliana Hiromi Google Scholar
Carvalho, Maria Helena C. Google Scholar
Michelini, Lisete Compagno Google Scholar
Fortes, Zuleica Bruno Google Scholar
Cunha, Tatiana Sousa Autor UNIFESP Google Scholar
Franco, Maria do Carmo Autor UNIFESP Google Scholar
Institution Universidade Federal de São Paulo (UNIFESP)
Universidade de São Paulo (USP)
Abstract Intrauterine growth restriction (IUGR) is associated with impaired vascular function, which contributes to the increased incidence of chronic disease. the aim of this study was to investigate whether aerobic training improves AngII-induced vasoconstriction in IUGR rats. Moreover, we assess the role of superoxide dismutase (SOD) isoforms and NADPH oxidase-derived superoxide anions in this improvement. Female Wistar rats were randomly divided into two groups on day 1 of pregnancy. A control group was fed standard chow ad libitum, and a restricted group was fed 50% of the ad libitum intake throughout gestation. At 8 weeks of age, male offspring from both groups were randomly assigned to 4 experimental groups: sedentary control (SC), trained control (TC), sedentary restricted (SRT), and trained restricted (TRT). the training protocol was performed on a treadmill and consisted of a continuous 60-min session 5 days/week for 10 weeks. Following aerobic training, concentration-response curves to AngII were obtained in endothelium-intact aortic rings. Protein expression of SOD isoforms, AngII receptors and the NADPH oxidase component p47(phox) was assessed by Western blot analysis. the dihydroethidium was used to evaluate the in situ superoxide levels under basal conditions or in the presence of apocynin, losartan or PD 123,319. Our results indicate that aerobic training can prevent IUGR-associated increases in AngII-dependent vasoconstriction and can restore basal superoxide levels in the aortic rings of TRT rats. Moreover, we observed that aerobic training normalized the increased p47(phox) protein expression and increased MnSOD and AT(2) receptor protein expression in thoracic aortas of SRT rats. in summary, aerobic training can result in an upregulation of antioxidant defense by improved of MnSOD expression and attenuation of NADPH oxidase component p47(phox). These effects are accompanied by increased expression of AT(2) receptor, which provide positive effects against Ang II-induced superoxide generation, resulting in attenuation of AngII-induced vasoconstriction.
Language English
Sponsor Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Grant number FAPESP: 2007/58044-2
FAPESP: 2010/51904-9
Date 2014-11-18
Published in Plos One. San Francisco: Public Library Science, v. 9, n. 11, 11 p., 2014.
ISSN 1932-6203 (Sherpa/Romeo, impact factor)
Publisher Public Library Science
Extent 11
Origin http://dx.doi.org/10.1371/journal.pone.0113035
Access rights Open access Open Access
Type Article
Web of Science ID WOS:000347121300072
URI http://repositorio.unifesp.br/handle/11600/38460

Show full item record




File

Name: WOS000347121300072.pdf
Size: 1.356Mb
Format: PDF
Description:
Open file

This item appears in the following Collection(s)

Search


Browse

Statistics

My Account