Crystal Structures of a Plant Trypsin Inhibitor from Enterolobium contortisiliquum (EcTI) and of Its Complex with Bovine Trypsin

Crystal Structures of a Plant Trypsin Inhibitor from Enterolobium contortisiliquum (EcTI) and of Its Complex with Bovine Trypsin

Autor Zhou, Dongwen Google Scholar
Lobo, Yara A. Autor UNIFESP Google Scholar
Batista, Isabel F. C. Google Scholar
Marques-Porto, Rafael Google Scholar
Gustchina, Alla Google Scholar
Oliva, Maria Luiza Vilela Autor UNIFESP Google Scholar
Wlodawer, Alexander Google Scholar
Instituição NCI
Universidade Federal de São Paulo (UNIFESP)
Inst Butantan
Resumo A serine protease inhibitor from Enterolobium contortisiliquum (EcTI) belongs to the Kunitz family of plant inhibitors, common in plant seeds. It was shown that EcTI inhibits the invasion of gastric cancer cells through alterations in integrin-dependent cell signaling pathway. We determined high-resolution crystal structures of free EcTI (at 1.75 angstrom) and complexed with bovine trypsin (at 2 angstrom). High quality of the resulting electron density maps and the redundancy of structural information indicated that the sequence of the crystallized isoform contained 176 residues and differed from the one published previously. the structure of the complex confirmed the standard inhibitory mechanism in which the reactive loop of the inhibitor is docked into trypsin active site with the side chains of Arg64 and Ile65 occupying the S1 and S1' pockets, respectively. the overall conformation of the reactive loop undergoes only minor adjustments upon binding to trypsin. Larger deviations are seen in the vicinity of Arg64, driven by the needs to satisfy specificity requirements. A comparison of the EcTI-trypsin complex with the complexes of related Kunitz inhibitors has shown that rigid body rotation of the inhibitors by as much as 15 degrees is required for accurate juxtaposition of the reactive loop with the active site while preserving its conformation. Modeling of the putative complexes of EcTI with several serine proteases and a comparison with equivalent models for other Kunitz inhibitors elucidated the structural basis for the fine differences in their specificity, providing tools that might allow modification of their potency towards the individual enzymes.
Idioma Inglês
Financiador United States Department of Energy, Office of Science, Office of Basic Energy Sciences
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
National Institutes of Health, National Cancer Institute, Center for Cancer Research
Número do financiamento United States Department of Energy, Office of Science, Office of Basic Energy Sciences: W-31-109-Eng-38
FAPESP: 09/53766-5
Data de publicação 2013-04-23
Publicado em Plos One. San Francisco: Public Library Science, v. 8, n. 4, 15 p., 2013.
ISSN 1932-6203 (Sherpa/Romeo, fator de impacto)
Publicador Public Library Science
Extensão 15
Fonte http://dx.doi.org/10.1371/journal.pone.0062252
Direito de acesso Acesso aberto Open Access
Tipo Artigo
Web of Science WOS:000318008400158
Endereço permanente http://repositorio.unifesp.br/handle/11600/36216

Exibir registro completo




Arquivo

Nome: WOS000318008400158.pdf
Tamanho: 2.808MB
Formato: PDF
Descrição:
Abrir arquivo

Este item está nas seguintes coleções

Buscar


Navegar

Minha conta