Evaluation of FAS and caspase-3 in the endometrial tissue of patients with idiopathic infertility and recurrent pregnancy loss

Michele Q. Panzan, Rosiane Mattar, Carla C. Maganhin, Ricardo dos Santos Simões, Alexandre Guilherme Zabeu Rossi, Eduardo Leme Alves da Motta, Edmund C. Baracat, José Maria Soares-Jr

A R T I C L E I N F O

Article history:
Received 12 March 2012
Received in revised form 27 July 2012
Accepted 23 October 2012

Keywords:
Endometrium
FAS–FAS-L
Bcl-2
Cleaved caspase-3
Idiopathic infertility

A B S T R A C T

Objective: To investigate expression of Bcl-2, FAS, FAS ligand (FASL) and cleaved caspase-3 in the endometrial tissue of women with idiopathic infertility (with two consecutive failed cycles of in vitro fertilization) and women with idiopathic recurrent pregnancy loss. The control group consisted of fertile women.

Study design: Endometrial tissue samples from fertile women (n = 25), women with idiopathic infertility (n = 25) and women with idiopathic recurrent pregnancy loss (n = 25) were collected on the seventh or eighth postovulatory day of their menstrual cycles for evaluation. Expression of Bcl-2, FAS, FASL and cleaved caspase-3 was assessed using immunohistochemical methods.

Results: Expression of Bcl-2 and FAS was significantly higher and lower, respectively, in the women with idiopathic infertility than in the other groups (p < 0.01). Expression of cleaved caspase-3 was significantly lower in the women with idiopathic infertility than in the other groups (p < 0.01). Expression of FASL was similar in all three groups.

Conclusion: Disturbances in endometrial apoptosis may be a contributing factor in patients with idiopathic infertility and recurrent pregnancy loss.

© 2012 Elsevier Ireland Ltd. Open access under the Elsevier OA license.

1. Introduction

Infertility is defined as one year of frequent unprotected intercourse that does not result in pregnancy. According to data from the National Survey of Family Growth, an estimated 10–15% of couples in the USA are infertile [1]. Idiopathic infertility is diagnosed when a couple does not conceive and no definitive causes of infertility can be diagnosed following a complete evaluation. Despite improved diagnostic techniques, the average incidence of idiopathic infertility has been reported to be approximately 15% in infertile couples [2], with a range of 0.1–37% [3–9]. Conventional treatments have not been effective in some cases of idiopathic infertility [9,10], and these patients were not able to conceive following these procedures [9,10]. It is important to understand the potential changes in endometrial physiology, particularly following the failure of consecutive cycles of in vitro fertilization (IVF), in cases of idiopathic infertility.

Idiopathic recurrent pregnancy loss is a serious reproductive problem. Most of these losses occur at the time of implantation, and 15–20% of cases end in spontaneous abortion. Recurrent pregnancy loss is defined as at least three consecutive miscarriages, and represents a frustrating clinical challenge for both clinicians and patients. Recurrent pregnancy loss affects 0.5–3% of women of reproductive age. Approximately 50% of recurrent pregnancy losses are idiopathic [11,12].

The human endometrium has the unique ability to undergo extensive and rapid remodelling [13]. It is fascinating to study, and has been used to understand normal and pathological uterine functions and as a model for rapid tissue remodelling events, such as embryonic development, tumorigenesis and wound healing.

As a mucosal tissue, the endometrium provides defence against infection [13]. It has a unique immunological capability that allows implantation of a semi-allogeneic embryo [14,15]. During the process of implantation, cellular differentiation and changes in the extracellular matrix and endometrial apoptosis may be important [16,17]. Apoptosis is regulated by various gene products, including
cytokines, interleukins and steroid hormones. Many promoters and inhibitors of apoptosis have been described. Tumour necrosis factor-α and the FAS/FAS ligand (FASL) system have been shown to promote apoptosis [18], while Bcl-2 appears to inhibit the process [19–27]. Several studies have suggested that apoptosis of human endometrial glandular cells is blocked by Bcl-2 expression during the proliferative phase, and is induced by the FAS/FASL system in an autocrine or paracrine manner during the secretory phase. In general, downstream signalling of the FAS/FASL system in human endometrial glandular cells is influenced by cleaved caspase-3, which represents an irreversible step during apoptosis [24]. Information regarding this process during the embryo implantation window is scarce, particularly in cases of idiopathic infertility and recurrent pregnancy loss.

2. Materials and methods

Between October 2004 and February 2007, 160 women were recruited as volunteers to participate in this study at the Gynaecology Endocrinology Outpatient Clinic at the Federal University of São Paulo, São Paulo, Brazil. Written informed consent was obtained from the participants, and the local ethics committee approved the study.

Case histories, complete physical and gynaecological examinations, transvaginal pelvic and complete abdominal ultrasonographies, and laboratory and hormone tests were performed. The women with idiopathic infertility had previously undergone a laparoscopy that did not reveal any signs of endometriosis or other anatomical disorders that could explain their infertility. All potential participants underwent a standard diagnostic work-up to rule out verifiable causes of recurrent pregnancy loss or idiopathic infertility prior to inclusion in the study. Diagnostic procedures included hysterosalpingography, hysteroscopy, paternal and maternal karyotypes, cervical cultures for chlamydia, ureaplasma and mycoplasma, a comprehensive hormonal status (oestradiol, progesterone, testosterone, 17-hydroxyprogesterone, dehydroepiandrosterone, androstendione, follicle-stimulating hormone (FSH), luteinizing hormone (LH), thyroid-stimulating hormone (TSH), free T4 and prolactin), evaluation of antiphospholipid syndrome using IgM and IgG anticardiolipin antibodies, and lupus anticoagulant testing. Blood was collected to test for toxoplasmosis, listeriosis, brucellosis, rubeola, cytomegalovirus, hepatitis (B and C), human immunodeficiency virus and VDRL (for syphilis). The exclusion criteria included: diabetes or high blood levels of fasting glucose (>110 mg/dl); anaemia (low levels of haematoglobin); leukocytes; liver and kidney disturbances; systemic arterial hypertension; a history of abnormal menses, anovulation or endometriosis (or high levels of CA-125); luteal body insufficiency; or other endocrinological disturbances. Women with endometrial tissues that were histologically incompatible with the secretory phase were also excluded from this study.

To avoid confounding factors due to ethnicity, only caucasian women were included in this study. Women with parents of the same ethnicity were included to avoid confounding factors due to genetic admixture.

In total, 75 volunteers were selected and divided into three groups of 25 women: (a) fertile women with at least two normal pregnancies and no history of infertility (control group); (b) women with idiopathic recurrent pregnancy loss; and (c) women with idiopathic infertility and two consecutive failed IVF cycles.

The specific inclusion criteria for each group were as follows: control group, at least two consecutive pregnancies and labours without any history of infertility or pregnancy loss; women with idiopathic recurrent pregnancy loss, a documented history (based on ultrasound examination) of at least three spontaneous consecutive miscarriages prior to 20 weeks of gestation with the same partner; and women with idiopathic infertility, a documented history of infertility with at least two consecutive failed IVF cycles using good-quality embryos (e.g. at least two embryos with eight cells (Grade 4) on the third day of embryonic life). The partners of the women with idiopathic infertility and recurrent pregnancy loss were normospermic and presented with negative semen and urethral cultures. The exclusion criteria in these two groups included the presence of thrombophilic factors (e.g. PT mutation G20210A, AT-III, R506Q mutation of Factor V Leiden, proteins C and S, lupus anticoagulant and anticardiolipin antibodies).

In the second clinic visit, patients underwent endometrial biopsies using a Pipelle catheter (Unimar, Bridgeport, CT, USA) under sterile conditions to remove tissue from the uterine fundus during the seventh or eighth postovulatory day of their menstrual cycles. Extreme care was taken to ensure that a sufficient tissue sample was obtained from each biopsy. The sample was fixed in 10% formalin and processed for histological evaluation using haematoxylin–eosin (H–E), and immunohistochemical analysis of Bcl-2, FAS, FASL and cleaved caspase-3.

For endometrial dating, 4 μm sections stained with H–E were evaluated. All of the endometrial biopsies were coded, and evaluated blindly by an experienced pathologist according to the histopathological criteria of Noyes et al. [28]. If the samples were not compatible with the secretory phase, the tissues were not included for immunocytochemical analysis.

All endometrial samples investigated in the study were tested using: mouse monoclonal antibody FAS (B-10, Santa Cruz Biotechnology, Santa Cruz, CA, USA; dilution 1:50), rabbit polyclonal FASL (N-20, Santa Cruz Biotechnology; dilution 1:50), a Bcl-2 oncoprotein kit [Dako, 124, MxH (M0887-1)], and cleaved caspase-3 (Asp175) (Antibody #9661, Cell Signaling Technology, Beverly, MA, USA; dilution 1:200).

The biopsy samples were embedded in paraffin and cut into 4 μm sections. The sections were dewaxed in Bioclear (Bio-Optica, Milan, Italy) and rehydrated in decreasing concentrations of ethanol followed by distilled water. Sections were pretreated in a 0.01 mol/l citrate buffer (Merck, USA) in a microwave oven (700 W) for two incubations of 12 min each and cooled at room temperature for 20 min. The slides were rinsed with Tris-buffered saline.

Endogenous peroxidases were blocked using 3% hydrogen peroxide in methanol for 10 min. The sections were washed in phosphate buffered saline (PBS), covered in 100 μl of blocking serum, and incubated for 30 min. The sections were incubated overnight with the primary antibody at 4 °C in PBS buffer with 1% bovine serum albumin (Sigma A 9647, USA). After washing with PBS buffer, localization of the antibodies was visualized by incubating the sections with secondary antibodies using a Dako kit (Dako LSAB + Sys, Peroxidase Universal K0690-1). After 30 min of incubation followed by washing, the sections were incubated with a freshly prepared solution of streptavidin–biotin immunoperoxidase (Dako LSAB kit) according to the protocol provided by the manufacturer. After washing, the bound enzyme was visualized following incubation with the enzyme in the presence of 3,3'-diaminobenzidine tetrahydrochloride (Dako K3468-1), 1% DMSO (Synth, Brazil) and 0.06% hydroxide peroxide in 100 ml of PBS buffer for 5 min at 37 °C in a dark room. The slides were washed in PBS with 0.1% Triton X-100. The sections were counterstained with haematoxylin and dehydrated prior to mounting with Entellan (Merck 107961, Germany). Palatine tonsill tissue and Bcl-2 were positive controls for FAS/FASL/cleaved caspases-3 and Bcl-2, respectively. Bovine serum albumin was substituted for the primary antibody and used as a negative control. Other negative controls were applied using non-specific goat antibodies with the same concentration of primary antibody for each immunohistochemical reaction (Bcl-2, FAS, FASL and cleaved caspase-3).
Epithelial cells were scored as negative if no immunopositive cells were present after immunostaining. The total score was based on the percentage of positive epithelial cells and the degree of immunostaining intensity.

The percentage of positive epithelial cells was graded as follows: no stained cells (Grade 0), 1–25% stained cells (Grade 1), 26–50% stained cells (Grade 2), 51–75% stained cells (Grade 3), and 76–100% stained cells (Grade 4) in the representative field [29]. The approximate percentage of immunopositive cells was estimated based on 10 representative fields. The immunostaining intensity was scored as negative (0), weak (1), moderate (2) or strong/intense (3) [30]. Three experienced observers who were blinded to the purpose of the slides performed all of the assessments. After completion of the study, the same observers re-examined the slides to ensure reproducibility of the semi-quantitative assessment. The total index was calculated using the following formula: total index = [percentage of positive cells] × [immunostaining intensity].

The results of all of the analyses were expressed as the mean and standard error of the mean and were analysed using two-way analysis of variance and Tukey–Kramer multiple comparisons. A significance level of 5% (α) was adopted for all tests. The descriptive level (p) was calculated and presented for all of the statistics. The power analysis assumed a clinically meaningful difference for four points between the three groups with respect to the primary endpoint. Under these assumptions, at least 22 women were required for 95% power.

3. Results

Table 1 shows the clinical characteristics of the women included in this study. There were no significant differences in age between the groups, and no differences in the volunteers’ age at first menstruation or their first experience of intercourse. All of the volunteers had regular 28.4 (±0.88)-day cycles. Abnormal uterine bleeding was not identified in any of the women. There were no significant differences in terms of body mass index. The Ferriman and Gallwey index was never more than seven for any of the participants. Hypertension (>140/90 mmHg) was not detected. The average number of gestations was higher in the control group and the women with recurrent pregnancy loss than the women with idiopathic infertility. The number of miscarriages, however, was significantly higher in the women with recurrent pregnancy loss, and the number of times a patient had been in labour was higher in the control group. The serum CA-125 levels and ultrasound data (performed on the day of the endometrial biopsy) of the participants were grouped together. No significant differences in CA-125 levels (expressed in U/ml) were identified between the groups. The ovarian volume (right and left ovaries) and the endometrial echos via transvaginal ultrasound did not reveal any significant differences between the groups. Signs of ovulation were detected in all of the patients using serial ultrasound. Uterine volume was greater in the control group than the other groups. None of the women presented with solid images or complex cysts in both ovaries.

Table 2 shows the hormone concentrations of the participants. No significant differences were detected in oestradiol and progesterone levels in the first phase of the cycle, or the FSH, LH, prolactin, TSH and free T4 levels in the second phase. Patients with hormonal discordance between ultrasonographic and histological analyses were not excluded from this study.

Figs. 1 and 2 show the immuno-expression levels of Bcl-2, FAS, FASL and cleaved caspase-3 in the three groups. The women with idiopathic infertility had the highest expression of Bcl-2 compared with the other groups, and the lowest expression of FAS and cleaved caspase-3. No significant differences in expression of FASL were observed between the groups.

4. Comment

This study investigated the expression of Bcl-2, FAS, FASL and cleaved caspase-3 in the endometrium of women with idiopathic infertility and recurrent pregnancy loss. The results indicate that women with idiopathic infertility may have lower expression of FAS and higher expression of Bcl-2, which suggests a decrease in apoptotic signalling mechanisms in the epithelial cells during the implantation window. A possible explanation for the observed results may be increased potential for infertile women to resist apoptosis. As embryo invasion is a dynamic process that involves cell proliferation and degradation, it may be a disadvantage for cells to respond with late onset or a lowered capacity for the necessary physiological process of apoptosis. This may explain the difficulty experienced by some women in achieving a successful pregnancy [25,26].

FAS and FASL are known to participate in apoptosis. FASL plays a crucial role in development of the normal immune system, and the maintenance, regulation and function of homeostasis. This protein binds with the FAS (CD95) receptor on the surface of sensitized cells to induce cell death [14]. The induction of FAS-mediated apoptosis is immunologically important, and dysfunction of apoptosis may contribute to the development of several autoimmune diseases [15,16] and various malignant neoplasms [17–19]. Although the details regarding the downstream signalling of the FAS/FASL system in human endometrial glandular cells during the menstrual cycle remain unknown, several studies have shown that caspase-8 may be activated by the FAS/FASL signal, resulting in the caspase cascade [20,21] and apoptosis. The reduction in FAS
protein and cleaved caspase-3 may result from disturbances in the cell death process.

The morphological changes observed in cells undergoing apoptosis is the final result of activation of specific enzymes known as ‘‘caspases’’. These enzymes modulate apoptosis and serve as markers of apoptosis even before morphological signs are evident. Caspases are responsible for the cleavage of substrates containing aspartic acid residues, such as poly (ADP-ribose) polymerase, cell cycle regulatory proteins and structural proteins, including laminin and actin [26]. Although more than 14 different caspases have been identified in humans, some have pro-apoptotic properties. For example, caspases-1, -4 and -5 are known to be important in inflammation, whereas caspases-2, -3 and -10 are predominantly (if not exclusively) associated with apoptosis [26].

Table 2
Hormonal determinations of participants (mean ± standard error).

<table>
<thead>
<tr>
<th></th>
<th>Control group</th>
<th>Women with idiopathic recurrent pregnancy loss</th>
<th>Women with idiopathic infertility</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oestradiol in first phase of menstrual cycle (pg/ml)</td>
<td>43.45 ± 3.88</td>
<td>54.50 ± 4.82</td>
<td>49.09 ± 4.93</td>
<td>0.23</td>
</tr>
<tr>
<td>Oestradiol in second phase of menstrual cycle (pg/ml)</td>
<td>224.92 ± 9.27</td>
<td>232.51 ± 15.06</td>
<td>198.98 ± 17.38</td>
<td>0.11</td>
</tr>
<tr>
<td>Progesterone in first phase of menstrual cycle (ng/ml)</td>
<td>0.77 ± 0.07</td>
<td>0.87 ± 0.09</td>
<td>0.82 ± 0.08</td>
<td>0.78</td>
</tr>
<tr>
<td>Progesterone in second phase of menstrual cycle (ng/ml)</td>
<td>16.28 ± 0.83</td>
<td>15.24 ± 0.61</td>
<td>14.35 ± 0.92</td>
<td>0.22</td>
</tr>
<tr>
<td>Follicle-stimulating hormone (mIU/ml)</td>
<td>6.83 ± 0.35</td>
<td>7.15 ± 0.54</td>
<td>8.25 ± 0.66</td>
<td>0.09</td>
</tr>
<tr>
<td>Luteinizing hormone (mIU/ml)</td>
<td>5.08 ± 0.38</td>
<td>4.76 ± 0.33</td>
<td>4.51 ± 0.35</td>
<td>0.51</td>
</tr>
<tr>
<td>Prolactin (ng/ml)</td>
<td>12.09 ± 1.36</td>
<td>12.96 ± 1.16</td>
<td>11.30 ± 1.43</td>
<td>0.55</td>
</tr>
<tr>
<td>Thyroid-stimulating hormone (μIU/ml)</td>
<td>2.69 ± 0.24</td>
<td>2.21 ± 0.18</td>
<td>2.29 ± 0.16</td>
<td>0.19</td>
</tr>
<tr>
<td>Free T4 (ng/dl)</td>
<td>1.19 ± 0.05</td>
<td>1.27 ± 0.05</td>
<td>1.20 ± 0.06</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Analysis of variance and Tukey’s test were applied for statistical analysis.

![Fig. 1](image-url) Photomicrographs of endometrial sections after immunostaining. Expression of Bcl-2: (A) control group; (B) women with idiopathic recurrent pregnancy loss; (C) women with idiopathic infertility. Expression of FAS: (D) Gcont; (E) women with idiopathic recurrent pregnancy loss; (F) women with idiopathic infertility. Expression of FAS ligand: (G) control group; (H) women with idiopathic recurrent pregnancy loss; (I) women with idiopathic infertility. Expression of cleaved caspase-3: (J) control group; (K) women with idiopathic recurrent pregnancy loss; (L) women with idiopathic infertility. The numbers represent the respective negative controls (non-specific goat antibodies) of immunohistochemical reactions: (1) Bcl-2; (2) FAS; (3) FAS ligand; (4) cleaved caspase-3. Bars = 20 μm; original magnification 400×.
However, the activation of caspase-3 is crucial to the phenomenon of irreversible cell death. At this irreversible stage, the cell is destined for apoptosis [27].

The FAS/FASL system is a factor in immune tolerance at the site of feto–maternal interaction and has been implicated in implantation and placentation development because it regulates trophoblast invasion and spiral artery remodelling [28]. This system is important for embryo implantation and development in the endometrium [29]. Although the function of FAS/FASL was originally described in the context of lymphocyte-mediated apoptosis of maternal lymphocytes, FASL was shown to be expressed in the human placenta and foetal membranes throughout the gestation period [29]. A reduction in levels of FAS protein may be involved in the failure of IVF cycles in women with idiopathic infertility.

In conclusion, to the authors’ knowledge, this is the first study to document the expression of Bcl-2, FAS and FASL in women with idiopathic infertility. Future studies will elucidate the role of disturbances in Bcl-2 and FAS/FASL signalling in the physiological and pathological mechanisms that trigger apoptosis during embryo implantation and invasion.

Conflict of interest statement

None declared.

Funding sources

This study was supported by FAPESP (São Paulo, Brazil) Grant # 2004/01424-0.

References

